

Learning Based Distributed Orchestration of Stochastic Discrete Event Simulations

Zhiquan Sui
Computer Science Department

Colorado State University
Fort Collins, CO, USA

simonsui@cs.colostate.edu

Neil Harvey
School of Computer Science

University of Guelph
Guelph, Ontario, CA

neilharvey@gmail.com

Shrideep Pallickara
Computer Science Department

Colorado State University
Fort Collins, CO, USA

shrideep@cs.colostate.edu

Abstract— Discrete event simulations (DES) are used in
situations where we need to understand or describe complex
phenomena. This paper describes an algorithm for dynamic
orchestration of stochastic DES. To cope with long execution
times in stochastic DES settings, we use MapReduce to achieve
concurrent processing of the simulation on a distributed
collection of machines. The proposed algorithm proactively
targets imbalances between subtasks of the simulation. It
achieves this by accurately predicting future execution times
for map instances and apportioning processing workloads
while accounting for the overheads associated with the
apportioning. Our empirical benchmarks demonstrate the
suitability of our scheme.

Keywords: discrete event simulations; MapReduce; load
balancing; proactive schemes; learning based orchestration

I. INTRODUCTION
Discrete event simulations (DES) are widely used in

different domains such as weather forecasting,
transportation modeling, and epidemiology. DES are used in
modeling complex phenomena by identifying entities of
interest and all possible interactions (or events) that can take
place between them. Stochastic DES is a special type of
DES where such interactions are based on probability
density functions associated with these interactions.
Subject-matter experts create these probability density
functions based on previously observed phenomena. Unlike
deterministic DES, a stochastic DES results in a slightly
different outcome every time it executes even with the same
set of starting parameters. This is because the interactions
between entities are stochastic. Since DES capture all
possible interactions between entities, their expressiveness
and fidelity comes at the price of long execution times.

The DES we consider in this paper is a stochastic DES
that models disease spread. To cope with long execution
times in stochastic DES settings, we use MapReduce to
achieve concurrent processing of the simulation on a
distributed collection of machines. The geographic area
being modeled is split into a set of contiguous sub-regions,
each of which is managed by a map instance. Each mapper
generates outputs at the end of each simulation day. The
outputs represent progression of the disease in the sub-
region managed by a mapper. These outputs are processed
by a reducer that serves as a coordinator. The coordinator is
responsible for state synchronization between the mappers
between successive simulation days. The state
synchronization includes information about depletion of

vaccines, movement controls including quarantines, and the
number of infections.

The simulation executes as an iterative MapReduce stage
with multiple, successive rounds of execution. Just as in the
traditional MapReduce framework, during the Map-phase
execution, individual mappers do not communicate with
each other. Each mapper functions autonomously without
blocking on input/communications from some other
mapper.

There are some differences from the traditional
MapReduce framework. The processing footprint at each
mapper may be slightly different. The stochastic nature of
the disease spread, and the concomitant processing loads,
ensures that imbalances are very likely. The coordinator
node (which serves as the reducer) is responsible for
apportioning and migrating processing loads to mitigate
imbalances; i.e., one of the mappers may take on processing
loads that belong to another mapper. This reshuffling of
processing loads is done during state synchronization at the
end of the simulation day. The process repeats itself in
iterative MapReduce phases until the simulation terminates
when the disease has been eliminated. Finally, our map and
reduce instances are stateful i.e. the result of processing
depends on the state built up within the computation.

Synchronization points play an important role in the
correctness and speed of the simulation. State
synchronization allows interactions to be consistent and
similar to what happens in a sequential run of the
simulation. The speed implications are based on the
compute imbalances between mappers. Each mapper must
complete the particular simulation day before: (1) the
reducer can generate a global state, (2) perform state
synchronization, and (3) initiate the next iteration of the
MapReduce state. Due to these synchronizations, the
simulation is only as fast as the slowest mapper between
each pair of synchronization points.

The research objective of this paper is to design a
dynamic orchestration scheme for discrete event
simulations. We achieve this by learning from previous
executions of the simulation, and incorporating this
knowledge into decisions that guide the distributed
orchestration.

A. Research Challenges
Challenges in accomplishing learning based distributed

orchestration of DES include:

1. Imbalances in event generation at mappers: Since the
simulation is stochastic there may be imbalances in
event generation. If disease is particularly active in a
sub-region, the number of events that are generated
within the corresponding mapper may be
disproportionately high. The greater the number of
events, the greater the processing overhead, i.e., the
mapper could be a performance hotspot.

2. Stochastic movement of performance hotspots: As
disease moves through the geographical area being
modeled, the performance hotspots move along with it.
Disease spread is based on stochastic interactions
between entities.

3. Reactive approaches can be limiting. Since
performance hotspots are short-lived and move
continually, a reactive approach that attempts to address
imbalance after the fact may not be effective. What is
needed is a proactive approach that prevents imbalances
from occurring. This would need to be based on
predicting execution times for mappers based on feature
vectors extracted from the simulation.

4. Prediction accuracy determines performance. In
proactive approaches, prediction accuracy for execution
times determines the efficiency of the orchestration. We
have to consider not just the average prediction
accuracy, but also the worst-case prediction accuracy.

5. Speed of load balancing operation. Load imbalance
detection and mitigation are in the critical path of the
simulation. Overheads that are greater than the accrued
performance gain are inefficient no matter how
balanced the mappers’ loads are.

B. Research Questions
The challenges described above guide the research

questions that we will explore. These include:
1. What is the composition of the feature vector that we

use to make predictions about execution times? Such
feature identification is a precursor to subsequent
training of the learning structures and predictions.

2. How can we balance the competing pulls of knowledge
management and prediction accuracy? The more detail
we maintain about the simulation, the more accurate
our predictions are likely to be. However, there are
costs associated with maintaining and updating this
information. Prediction accuracy should not be at the
cost of delays in making the predictions.

3. How can we balance the competing pulls of load
balancing efficiency versus performance overheads?
Complex load balancing mechanisms that minimize
imbalances may introduce unacceptable performance
costs. Since load balancing operations are in the critical
path of the simulation execution, it is important to
ensure that the costs for load balancing do not outpace
any gains due to alleviating imbalances.

C. Approach Summary
In this paper we present the design of a framework to

reduce the execution time of a stochastic DES. We
accomplish this via distributed orchestration of the DES.
We express the DES as an iterative MapReduce pipeline
with each mapper responsible for managing a certain
geographical scope of the region being modeled. Given the
large number of synchronization points as well as the
imbalances that exist between mappers, load balancing
decisions are key to ensuring faster completion times. Our
approach is based on a proactive load-balancing scheme that
tries to prevent imbalances from occurring in the first place.
This is predicated on accurately predicting future execution
times for each mapper and making load-balancing decisions
that mitigate future imbalances.

Our load prediction approach uses several simulation
variables as elements of the feature vector used for
predictions. Elements of our feature vector track several
variables that capture the prevalence and intensity of the
disease outbreak. Some of these variables are used in
programmatic constructs such as loop variables, recursion
depth, and so on. Since the orchestration and load balancing
decisions are based on these predictions, a key requirement
is prediction accuracy. In our work, we use Artificial Neural
Networks (ANN) [12] to predict the execution time. We
found that during training of these neural networks, the data
points relating to execution of the simulation are not
distributed uniformly. To address this we have multiple
ANNs and organize them into a Multi-Stage Neural
Network (MSNN) [13]. The choice of the particular ANN
with the MSNN for predictions in based on the execution
time of the previous simulation day. Our experiments
demonstrate the suitability of our feature vector and the
MSNN in predicting execution times for mappers
accurately.

Load balancing decisions must target imbalances among
mappers. We achieve this by reapportioning load between
the mappers. This reapportioning has costs associated with
it, including state-transfer and creation of additional map
instances. To minimize these overheads, we designed a P2P
message passing mechanism among mappers along with
data compression to reduce communication overheads.

However, pursuing prediction accuracy and efficiency in
targeting imbalances without also tracking overheads can be
problematic. In some situations overheads can dominate
execution time and, rather than achieving a speed-up as
more resources are added, performance degradations occur.
Our work relies on a lightweight scheme for predicting
execution times, and ensuring that load-balancing decisions
including reapportioning are done only when the expected
gains in execution times outpace the overheads.

D. Paper Contributions
Our algorithm for orchestration of processing workloads
learns from the computational footprints of disease
outbreaks to inform load balancing decisions. The algorithm

focuses on proactive mitigation of load imbalances. The
approach combines execution time forecasts and imbalance
mitigation while accounting for overheads associated with
reapportioning workloads. Our proposed algorithm is
applicable to other DES as well; our approach to execution
time prediction copes with situations where some of the
elements within the feature vector contribute more heavily
to execution times than others.

E. Paper Organization
This paper is organized as follows. In section II, we

describe the background for our work. We address our prior
work and inefficiencies in section III; this also provides the
motivation for the current work. Section IV describes the
elements that comprise our algorithm. Experimental results
are described in section V. In section VI, we discuss related
work. Finally, we give our conclusions in section VII.

II. BACKGROUND

A. North American Animal Disease Spread Model
(NAADSM)

NAADSM is a simulator for the spread and control of
livestock diseases [11]. Diseases simulated within
NAADSM include foot-and-mouth disease (FMD), exotic
Newcastle disease, pseudo rabies, and avian influenza. It
was developed collaboratively by the US Department of
Agriculture, the Canadian Food Inspection Agency,
Colorado State University, the University of Guelph, and
the Ontario Ministry of Agriculture, Food and Rural Affairs.
NAADSM is a stochastic discrete event simulation.

Examples of events in the simulation are exposures,
detections, quarantine, test results, vaccination, and culling.
The probability of various events occurring is governed by
probability density functions (PDFs), which are input by the
modeler based on scientific evidence and observations made
by epidemiologists. Figure 1 sketches the activities that can
occur on each simulation day.

Figure	
 1:	
 Activity	
 diagram	
 for	
 a	
 single	
 simulation	
 day.	

The fundamental unit of disease spread and control is a

farm. Each farm has a state with respect to the disease, such
as susceptible, infected, or immune. NAADSM simulates
both spatial and temporal aspects of disease spread and

control. Examples of spatial activities are movement of
animals between farms and establishment of disease control
zones. The temporal aspect encompasses the progression of
individual farms through disease states, and propagation of
the disease between farms over simulation days.

B. Granules
Granules is a lightweight streaming runtime [10].

Granules supports two of the dominant models for cloud
computing: Map-Reduce [1] and directed acyclic dataflow
graphs [15]. Granules extends these models by including
support for streaming datasets, stateful computations, and
support for cycles within these graphs. Granules
computations can be developed in C, C#, C++, Java, Python
or R.

Computations can retain state across executions and have
built-in lifecycle support. Users can activate computations
either periodically or when data is available and enforce
restrictions on the number of times that a computation can
be executed. Users can programmatically specify a
scheduling strategy for computations that is a combination
along these dimensions. Granules manages the lifecycle and
finite state machine associated with computations.

Granules maximizes utilization of a resource by
interleaving the concurrent execution of thousands of
computation tasks by scheduling tasks for execution only
when all its scheduling constraints have been satisfied, and
keeping them dormant otherwise. The system makes no
assumptions about the type of resource hosting these
computations: individual resources could be stand-alone
workstations or nodes within a cluster, a supercomputer, a
grid, or a data center (public or private cloud). Resources
could also be virtualized machines.

C. NAADSM with Granules
NAADSM is adapted to work within Granules by

dividing the geographic area being modeled into a set of
contiguous sub-regions, each of which is treated as one
Granules computation. The computations communicate
once per simulation day, each computation sending out a
subset of the events it generated that day. The events a
computation sends out are those that could affect the sub-
regions managed by other computations. For example, a
movement of animals that crosses between sub-regions must
be communicated. The first detection of disease inside the
sub-region must be communicated, because it may initiate
movement slowdowns across the entire population.
Establishment of a disease control zone must be
communicated, because the control zone boundary may
overlap the border between sub-regions. Quarantining or
culling of farms must be communicated, because
neighboring computations need to know which farms are no
longer capable of receiving contacts from others.

Once all of the computations have exchanged these
update messages, they all proceed with the subsequent
simulation day.

III. PRIOR WORK
In our previous work [14], we designed several load

balancing algorithms. Among these algorithms, dynamic
split and merge (DSM) was the best solution for most
situations. In DSM, the system checks the execution time of
each mapper on each simulation day. If there are any
currently unused (spare) mappers, the slowest mapper(s)
will be split to make use of the spare mappers. In the
meantime, if the total execution time of two adjacent
mappers is less than 70% of the execution time of the
slowest mapper, the system will merge them together. Using
this algorithm, the system reaches a dynamic equilibrium.

However, in some circumstances DSM suffers from a
performance bottleneck. We divide the simulation work by
geography, with each mapper managing a geographically
contiguous area. Therefore when we consider merging fast
mappers, we can only merge two mappers that manage
adjacent areas. There might be an idling mapper between
two slow mappers but we cannot merge it. For example,
consider the case of 64 mappers where the execution time
follows the pattern 70 seconds, 0 seconds, 70 seconds, 0
seconds, etc., plus one mapper that takes 100 seconds. In
this case, the load balancing efficiency is only about 35%,
and because the fast mappers are not adjacent to each other,
DSM cannot improve the performance.

Figure 2: Architecture Overview. The entire simulation

executes as an iterative MapReduce stage.

There are many elements to this algorithm that could be
tuned. The criteria for split and merge operations are simply
the execution times from the previous simulation day, since
they are generally close to the execution times of the next
simulation day. When a mapper is split, the split is done
such that the two new mappers manage either the same
amount of area or the same number of farms; these
approaches split the workload roughly in two, but not
exactly. Communication overhead starts to impact the
performance as the number of mappers increases, but we did
not explore ways to reduce the overhead. Tuning these
elements would not overcome the bottleneck in the

algorithm. In our more new algorithms, however, we do
consider these potential areas for improvement.

IV. DESIGN OF CURRENT WORK
Our architecture is depicted in Figure 2. All aspects

relating to load balancing decisions are made at the reducer.

A. Proactive Apportioning of Workloads (PAW) Algorithm
Our PAW algorithm addresses deficiencies in the DSM

algorithm. If imbalances appear, this algorithm merges the
entire workload together and splits it equally among all the
mappers. Ideally, the workload will be completely or close
to completely balanced in each simulation day. The PAW
algorithm eliminates the situation where the load is
imbalanced but the system is unable to alleviate the
imbalances. An apportioning operation is depicted in Figure
3.

Figure 3: Example of the PAW algorithm. Each blue block

represents a mapper. The number within the blocks represents the
execution time. The PAW algorithm balances the execution time to

minimize the waiting time of most of the workers.

There are several important considerations related to
performance. First, the overhead of the apportioning
operation must be small. If the operation achieves a 3
second performance gain but adds 20 seconds of overhead,
it is counter-productive. In the DSM algorithm, the
overhead of one load balancing operation was about 0.3
seconds, which was acceptable when a simulation day lasts
more than 10 seconds. However, splits and merges were
occasional operations involving a few mappers. In contrast,
in the PAW algorithm, all of the mappers perform the
apportioning operation at the same time. To avoid hitting
network bandwidth limits, we must find ways to reduce the
communication time.

The second key consideration for the PAW algorithm is
accurate prediction of execution time. In the DSM
algorithm, the accuracy did not need to be high; we used the
execution time of the previous simulation day as a very
rough prediction of the next day’s execution time. However,
in the PAW algorithm, since each load balancing operation
involves so many mappers, any prediction error may
accumulate. For this algorithm, we used an artificial neural
network (ANN) and multi-stage neural network (MSNN) to
predict the execution time. The details of these prediction
mechanisms are introduced in IV.C and IV.D.

The third key consideration for the PAW algorithm is the
split mechanism. For instance, if we want to split one
mapper with a 40%-60% split, how should we do this? In
the DSM algorithm, we tried splitting the mapper such that

M1

M2

M3

M4

Reducer'

Simulation executes
as a set of Map subtasks

Reducer is responsible for
state synchronization and
apportioning of processing
loads

3 1 7 1

3 3 3 3

the geographical area managed was divided 40/60, and we
also tried splitting the mapper such that the number of farms
managed was divided 40/60. These are just approximations
to truly splitting the workload 40/60. This drove us to
develop a better mechanism for the PAW algorithm.

B. Communication Message Reduction and Compression
Communication overhead is an important problem in the

PAW algorithm because all of the mappers pass messages to
controller, and the controller passes messages back to the
mappers, when an apportioning operation needs to happen.
The bandwidth of the network may become a bottleneck. In
our particular case, before doing any message reduction or
compression, each apportioning message is about 25Mbytes.
The message is sent from the mappers to the controller and
from the controller to the mappers. Since there are 64
mappers, the total message size is 64*25*2 = 3.2Gbytes.
Our bandwidth is 128Mbytes per second, so one
apportioning operation takes 25 seconds, which is
unacceptable: we must reduce the communication overhead.

We apply both message reduction and compression
mechanisms. In the DSM algorithm, a mapper may go
inactive at the end of one simulation day (because it is
merged with another mapper) and then be re-activated on a
later simulation day. When the mapper is re-activated, it
must be restored with all of the state information it needs to
return to participating in the running simulation—which
may be a considerable amount of state information.
Specifically, the state information would include the current
disease state of every farm in the area managed, countdowns
to state transitions, some state information about farms
outside of the area managed (enough to know which can or
cannot receive contacts), records of past contacts among
farms (in case the simulated disease control authorities need
to do “tracing”, or following the path of infection backwards
from a detected infected farm), the current shape of the
disease control zones, and more. In contrast, in the PAW
algorithm, all of the mappers are active on every simulation
day. When the workload is “apportioned” among the
mappers, each mapper can retain much of the state
information it already has, and send/receive only as much
information as it needs to give up management of certain
farms and take on management of certain others. This
reduces the size of the apportioning message by more than
half.

We also use GZIP compression on the messages. There is
a tradeoff between message size and compression overhead:
if the message is small, it is not worth the cost of
performing the compression. We decide whether to
compress, and what the compression ratio is, based on the
message size.

C. Prediction of Execution Times
It is possible for us to get useful information from the

simulation as it runs to help predict the future execution
time. Our prediction uses both the execution time of the

previous simulation day and some additional features that
quantify the workload for a particular simulation day; these
are listed in TABLE I.

TABLE I. PREDICTION FEATURES FROM SIMULATION

Feature Number Feature Content

1 # farms managed by this mapper

2 area in km2 managed by this mapper

3 # adequate exposures

4 average distance of adequate exposures

5 average latent period for new infections

6 # farms detected as diseased today

7 # contacts traced today

8 # farms destroyed today

9 # destruction tasks queued

10 # adequate exposures by direct contact

11 # adequate exposures by indirect contact

12 # adequate exposures by airborne spread

13 # farms vaccinated today

14 # vaccination tasks queued

15 area in km2 of the zones

We use an ANN as the predictor because it works well for
non-linear data. Based on experiments to get the best
prediction accuracy, our propagation method is resilient
propagation, there is 1 hidden layer with 30 nodes, and the
condition under which training of the learning structure ends
is that the error between 10 iterations is less than 1E-6.

D. Multi-Stage Neural Network (MSNN)
Acquiring training data for our prediction methods is a

challenge because we cannot control how the execution
times are distributed. For instance, there might be too many
training samples whose execution times (per simulation day)
are around 3 seconds but too few samples whose execution
times are around 30 seconds. This data distribution may
make the model fit better to the short execution time
samples and not as well to the long execution times
samples. However, the prediction accuracy of the 30-
seconds samples is more important than 3-seconds samples,
because the longer the execution time, the more time is lost
due to prediction errors. We use MSNN to eliminate the
influence of the abnormal distribution of training data.

MSNN is a simplified version of a Resource-Allocated
Network (RAN). The basic idea of RAN is to cluster the
training data and construct a different ANN for each cluster.
New incoming training data do not influence the predictions
for data which is far away. In our case, we do not need a
complex clustering algorithm because the execution time of
the previous simulation day is usually similar to the
execution time of the next simulation day; we can exploit

this to quickly cluster the training data. We construct 4
ANNs based on the execution time of the previous
simulation day. For the testing data, we check the execution
time of the previous simulation day and use the
corresponding ANN to predict the execution time.

E. Overhead vs. Load Balancing
We experimented with a split mechanism based on the

states of individual farms. From observations of the
simulation, the current state of a farm affects how much it
adds to the computational load. For example, an infected
farm can infect other farms; thus, infected farms add more to
execution time than susceptible farms. The type of the farm
can be a factor: for example, some types of businesses have
higher shipping/receiving rates than others. And while
airborne spread may influence only the immediate
neighborhood of an infected farm, direct-contact spread can
have a wider effect. We constructed a model for all these
situations, using regression methods to find the best fit.
Based on the model, we can split the area managed by a
mapper such that the expected amount of work that will be
generated by farms on each side of the split is in the desired
proportion.

Maintaining this table of farms could potentially increase
the prediction and split accuracy greatly. However, in our
benchmark simulation which contains 660,000 farms, the
overhead for maintaining this table is more than 10 times the
execution time of the simulation itself. Thus, it is prohibitive
to maintain such a table even if the load balancing is efficient.

V. EXPERIMENTAL RESULTS
For our experimental benchmarks we used a NAADSM

scenario that simulated an outbreak of foot-and-mouth
disease (FMD). The population was based on Kansas, USA
data, but up-sampled to 660,000 farms, which is the
approximate number of FMD-susceptible farms in the 12
Midwest US states.

NAADSM as originally written uses a global random
number generator for stochastic decisions. This presents a
problem for comparing execution time in various distributed
configurations. A run performed on a single mapper will not
behave the same way as a run distributed across two
mappers, even if the same random number seed is used,
because the same sequence of samples will not be drawn
from the random number generator in these two cases. We
addressed this problem by attaching a separate random
number stream to each farm, initialized by combining a
global seed and the farm’s unique ID. All stochastic
decisions pertaining to a farm are made using the farm’s
own random number stream. Because a single farm is never
divided across mappers, this scheme guarantees that given
the same starting seed, the same sequence of events will
occur in the simulation, regardless of how many mappers
the run is distributed across. Note that this was done solely
for the purpose of forcing identical runs of the simulations
(no matter how many mappers the run is distributed across)

so that execution time can be meaningfully compared across
experiments. It is not a mandatory step for adapting
stochastic simulations to a distributed setting.

Experimental results presented in this section were
obtained on a 78-node cluster connected by a 1 Gbps link.
Individual machines in this cluster run Fedora OS (version
20) and have 4-core, 2.4 GHz CPUs and 12 GB of RAM.

Our performance benchmarks profile our predictions, the
communication costs associated with our algorithm, and the
speed-ups generated by our algorithm in physical and virtual
machine settings.

Figure 4 Prediction Accuracy

A. Prediction Accuracy
In our work, we use a MSNN to predict the execution

time of a simulation day. In our prediction results, our focus
is on points where the execution time lasts more than 2
seconds. For points with shorter execution times, prediction
errors do not influence the total execution time. Our
prediction accuracy is depicted in Figure 4; on average our
accuracy is 85.4%. These predictions are fast, on the order of
100 microseconds. The results demonstrate that our scheme
produces acceptable accuracy with low overheads.

Our prediction accuracy does not need to be extremely
high. First, the overheads associated with getting extremely
high prediction accuracies can be quite high. Since the
execution time for each simulation day lasts only for seconds,
we cannot afford prediction methods with overheads in the
orders of seconds even if the predictions are perfect. Second,
even if we predict the execution time perfectly, we might
still not be able to balance the load perfectly. This is because
our re-shuffle mechanism is based on herds’ density. For
instance, if we decide to partition a sub-region using a 70-30
split, the partitioning will keep 70% of herds in left sub-
region and 30% in the right one. However, the execution
time is closely but not perfectly aligned with herd density.
Thus, even if the 70-30 is the perfect prediction result for
partitioning, we might not be able to partition the sub-region
to achieve exact execution times.

B. Compression Performance
We profiled our use of compression to reduce message

sizes during synchronization. We used gzip as our
compression algorithm. The synchronization messages are
highly amenable to compression. We tracked both the
compression rate (defined here as compressed size divided
by uncompressed size) and compression time; this is
depicted in Figure 5. For larger messages, the compressed
message is about 1% of the size of the uncompressed
message. The compression time increases almost linearly
with the message size. When the message size is about
150Mb, the compression time is about 2 seconds.

Figure 5 Compression rate and time for synchronization messages

C. Performance of Simulation
In comparison with the DSM algorithm, the PAW

algorithm fares better in scenarios with fewer mappers.
When there are only 2 or 4 mappers, DSM has no way to
adjust the load even if the system is aware of the existence
of imbalances. However, the PAW algorithm can re-shuffle
the load to make it more balanced. The speed-up figure for
PAW algorithm is shown in Figure 6.

From Figure 6 we can see that the speed-up for 2, 4, 8 and
16 mappers scenario is ideal. Furthermore, there is even a
“super” speed-up for runs with smaller numbers of mappers.
The reason for this is the changing ratio of execution time to
communication overhead time. If there are only 4 mappers,
the split and restore messages for the apportioning operation
just need to be passed among 4 mappers; but when the
number of mappers increases to 64, the number of messages
passed for the apportioning operation increases. With the
simulation work divided among 64 mappers, the maximum
execution time of a simulation day is only about 24 seconds.
The communication overhead time of 3 seconds is more
than 10% of the execution time. With fewer mappers, the
execution time of the slowest simulation day is always
hundreds of seconds.

Figure 6 Execution Time and Speed-up for PAW algorithm

Figure 7 compares the two load balancing algorithms.
From this figure we can see that the PAW algorithm is
always superior to the DSM algorithm, but especially so
when the number of mappers is small.

Figure 7 Speed up comparison for 2 load balancing algorithms

D. Performance on Virtual Machines
In this paper, we optimized the execution time for one

run of simulation. In practice, the stochastic simulation has
to be run multiple times and the results averaged to achieve
the most likely result. Since the multiple simulations will be
executed at the same time, the scale of the cluster will likely
be extremely large. In practice, we will run these
simulations in cloud settings.

In cloud based settings, resources are typically
provisioned as virtual machines. Thus, we also need to test
our experiments in virtual machine settings to identify
performance and execution issues.

Figure 8 Execution time comparison w/o VMs for 1 mapper

scenario

We also profiled the performance of our algorithm in a
virtualized environment. Our virtualized environment was
set up on the same cluster we used for our earlier tests. We
used the KVM hypervisor on Fedora 20.

First, we ran a scenario on 1 mapper in the VM setting
and contrasted the execution time with that in a physical
machine setting. This is depicted in Figure 8. Virtualization
overheads become more noticeable during peak loads of the
simulation.

Figure 9 Execution time comparison w/o VMs for 32 mappers

scenario

We also executed the scenario with 32 mappers and 64
workers; this is depicted in Figure 9 and Figure 10. The
execution time varies considerably from day to day. This
indicates that the load balancing mechanism is adjusting the
load frequently and the bottleneck now becomes the load
balancing efficiency. When comparing virtual machine
performance with physical machine performance, we found
a general trend towards lower overheads as the number of

mappers increased. For example, the overhead (i.e. the
increase in execution time for the exact same outbreak with
the same number of mappers) for the 1 mapper scenario is
26.5%, but for the 32-mapper scenario this reduces to 3.9%,
and for the 64-mapper scenario the overhead is 5.4%. From
our experiments we can conclude that a single VM does not
perform as well as the physical machine, but when the
number of VMs increases, the performance in the VM
setting improves in relation to that in the corresponding
physical machine setting.

Figure 10 Execution time comparison w/o VMs for 64 mappers
scenario

VI. RELATED WORK
Discrete event simulations are widely used in different

areas. In atmospheric sciences there is the well-known
Regional Atmospheric Modeling System (RAMS) [16] that
was developed in 1992. At that time, cluster and cloud
computing techniques are not popular and thir parallel
orchestrations were based on MPI. In the circuit design area,
Bagrodia, R, etc. have designed a parallel simulation
environment for complex systems named Parsec [17] in
1998. In this system, the authors consider both conservative
and optimistic strategies. This approach also considers the
load balancing problem and communication overheads. The
Space Surveillance Network (SSN) also uses discrete event
simulations and a parallelization mechanism has also been
designed [18]. This parallelizes the primary functional areas:
Probability of Detection (PoD) which takes around 80% of
the execution time. Since the PoD computations are
completely independent, the parallelization is rather simple.
Another approach is addressed in [19] where a comparison
of the conservative and optimistic strategies has been
performed. The authors prefer the optimistic strategies with
rollback mechanism; however, details of how this was
implemented are light.

There are many researchers concentrating on execution in
distributed systems. Using frameworks is a convenient way
to approach implementations. Google’s MapReduce

framework is a suitable approach for orchestrating many
large scale problems. It divides the problems into a Map
phase and a Reduce phase, and solves each phase in a
distributed way. Hadoop [2] is the most dominant
implementation of the MapReduce framework. It
accomplishes the basic functionality of MapReduce, and
supports managing, tracking and relaunching tasks.
Furthermore, an approach to conquer heterogeneity in the
Hadoop framework is introduced in [3]. However, in these
frameworks, the results from the Map phase are written to
disk and used by the Reduce phase directly, and there is no
support for a cyclic communication pattern. In our
simulation, each simulation day can be treated as an
MapReduce cycle. But since we have multiple simulation
days, the traditional MapReduce framework is not
sufficient, hence our use of the Granules framework to
implement a controller-worker model to provide the iterative
MapReduce structure we need for our research. Granules
uses NaradaBrokering for stream disseminations [27].

Existing research in parallel discrete event simulations
covers many domains, such as weather forecasting, traffic
simulation [4], chemical plant modeling [5], urban
congestion [6], and telecommunication network
management [7]. The characteristics of our disease spread
model are similar to these domains in many aspects (e.g., a
large number of interacting entities, frequent
synchronization requirements) so some of the load
balancing mechanisms from the literature can be considered.
There are several load balancing mechanisms introduced in
[8] and [9]. However, our requirements for geographical
contiguousness and frequent communications between non-
adjacent sub-regions for disease spread by direct contact
(i.e., animal movement) differ from the underlying
assumptions in this other work. Thus, we needed to develop
new load balancing mechanisms.

Failure recovery is another mechanism to address the
causality problem. It does not require any synchronization.
When the causality problem occurs, the system will rollback
the event. This mechanism is efficient when the causality
problem is rare and the rollback is not expensive. For
instance, one entity only influences a few adjacent entities
in one simulation time unit. If the causality problem is
detected fast enough, the rollback operation only involves a
few entities. Under this circumstance, the failure recovery
mechanism provides performance. Fujimoto introduces a
direct cancellation mechanism in [23][24]. This uses shared
memory to cancel the incorrect computation of events. Once
an event depends on another event, a pointer will be left. If
the system found the first event is incorrect executed, it is
fast to cancel the dependence event with that pointer. The
application domain for failure recovery in [25] is aviation.
In this approach, the system schedules events in a “look
ahead” manner. The events are dispatched as far ahead as
possible. This enhances parallelization since the probability
of rollback is significantly reduced. Moreover, even if the
rollback occurs, the number of events that need to be rolled

back is minimal. Thus, the performance of failure recovery
is improved in this approach. In [26], an improved
mechanism for rollback recovery is proposed. Instead of
rollback from the failure status, a shared memory system is
used to maintain the information. Using a dirty-bit
mechanism, the information is only updated and scheduled
when necessary. It reduces the overhead of rollback and
synchronization mechanism. In our research, since the state
of each herd may be influenced by all the other herds, the
rollback cost is too huge. Thus, we have to synchronize
instead of rollback.

Thulasidasan et al [8] have focused on the load balancing
optimization using: even distribution of entities,
computational load divisibility, and the scatter partition
strategy; the scatter algorithm clearly outperforms the other
two strategies. However, in our case, because geographical
contiguousness of subregions managed by the mappers must
be preserved, we cannot use the scatter partition strategy.

Process migration [20] is another common technique to
implement dynamic load balancing for split based on events.
In [20], the authors introduce migration requirements,
mechanisms and characteristics. Also it summarizes many
examples of process migration. The authors posit that all
process migration problems can be summarized into when
to migrate which process where. This ties into distributed
scheduling policies such as sender-initiated policy, receiver-
initiated policy, and a symmetric policy that combines
aspects of the previous two. These policies are suitable for
different environments. Sender-initiated policy fits the
situation when the network is idling while receiver-initiated
policy works better when the network is busy. The
symmetric policy balances the communication overheads by
looking for idling and busy workers and works well in both
situations.

There are several approaches based on process migration,
that use different criteria to trigger the migration [21][22].
Ref [21] outlines a dynamic load balancing strategy. In this
approach, each processing element maintains two local
tables with information representing its view of the system’s
load distribution. This algorithm uses a distributed approach
to disseminate the global information and a low overhead
update mechanism. Thus, the load will be migrated among
processing elements based on the tables. In [22], a
centralized agent periodically checks for imbalances in the
system and finds a suitable time for migration. The
imbalance detection mechanism is based on a threshold.
Process migration is a good technique when the number of
tasks is high and the costs for migration low since the entire
process needs to be migrated. However, in our case, process
migration is not appropriate given the fine-grained tasks.

VII. CONCLUSION AND FUTURE WORK
Proactive load balancing of DES during distributed

orchestration entails prediction of execution times for the
constituent tasks and attempting to mitigate imbalances
before they worsen. Apportioning workloads to mitigate

imbalances care must be done only when the costs for doing
so do not outpace the expected gains in reduced waiting
times for sub tasks. Costs associated with ensuring
prediction accuracy for execution times can be controlled by
incorporating feature vector pruning schemes; this can be
accomplished by identifying the predictive value associated
with features within the feature vector – in the case of
ANNs this can be determined by the weights associated with
inputs after the training process is completed.

Our future work will focus on improvements in
prediction accuracy and apportioning of workloads.
Currently, the feature vector for our predictions includes
simulation output variables. We plan to augment this vector
with the static and dynamic profile of machines where the
tasks are executing. This information would be used not just
for predictions but also to guide apportioning schemes to
reduce the influence of unexpected slowdowns of machines.

ACKNOWLEDGMENT
This research has been supported by funding from the US

Department of Homeland Security’s Long Range program
(HSHQDC-13-C-B0018) and the US National Science
Foundation’s Computer Systems Research Program (CNS-
1253908).

REFERENCES
[1] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing

on Large Clusters," Proc. 6th Conf. Symp. Operating System Design
and Implementation (OSDI 04), Usenix Assoc., 2004, pp. 137-150.

[2] Apache hadoop website. http://hadoop.apache.org/, April 2010.
[3] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Stoica, I.

Improving MapReduce Performance in Heterogeneous Environments.
In Proceedings of OSDI. 2008, 29-42.

[4] Richard M. Fujimoto. 1990. Parallel discrete event simulation.
Commun. ACM 33, 10 (October 1990), 30-53.

[5] Bikram Sharda and Scott J. Bury. 2008. A discrete event simulation
model for reliability modeling of a chemical plant. In Proceedings of
the 40th Conference on Winter Simulation (WSC '08), Scott Mason,
Ray Hill, Lars Mönch, and Oliver Rose (Eds.). Winter Simulation
Conference 1736-1740.

[6] Thulasidasan, S.; Kasiviswanathan, S.; Eidenbenz, S.; Galli, E.;
Mniszewski, S.; Romero, P.; , "Designing systems for large-scale,
discrete-event simulations: Experiences with the FastTrans parallel
microsimulator," High Performance Computing (HiPC), 2009
International Conference on , vol., no., pp.428-437, 16-19 Dec. 2009

[7] Benveniste, A.; Fabre, E.; Haar, S.; Jard, C.; , "Diagnosis of
asynchronous discrete-event systems: a net unfolding approach,"
Automatic Control, IEEE Transactions on , vol.48, no.5, pp. 714-
727, May 2003

[8] Thulasidasan, S.; Kasiviswanathan, S.P.; Eidenbenz, S.; Romero, P.; ,
“Explicit Spatial Scattering for Load Balancing in Conservatively
Synchronized Parallel Discrete Event Simulations,” Principles of
Advanced and Distributed Simulation (PADS), 2010 IEEE Workshop
on , vol., no., pp.1-8, 17-19 May 2010

[9] Deelman, E.; Szymanski, B.K.; , “Dynamic load balancing in parallel
discrete event simulation for spatially explicit problems,” Parallel and
Distributed Simulation, 1998. PADS 98. Proceedings. Twelfth
Workshop on , vol., no., pp.46-53, 26-29 May 1998.

[10] Shrideep Pallickara, Jaliya Ekanayake and Geoffrey Fox. Granules: A
Lightweight, Streaming Runtime for Cloud Computing With Support

for Map-Reduce. Proceedings of the IEEE International Conference
on Cluster Computing (CLUSTER 2009). New Orleans, LA.

[11] Harvey, N., et al. The North American Animal Disease Spread
Model: A simulation model to assist decision making in evaluating
animal disease incursions. Preventive Veterinary Medicine, 82
(2007), 176-197.

[12] Christopher M. Bishop. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

[13] John Platt. 1991. A resource-allocating network for function
interpolation. Neural Comput. 3, 2 (June 1991), 213-225.

[14] Zhiquan Sui, Neil Harvey and Shrideep Pallickara. On the Distributed
Orchestration of Stochastic Discrete Event Simulations. (To appear)
Concurrency and Computation: Practice & Experience. John-Wiley.

[15] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. 2007. Dryad: distributed data-parallel programs from
sequential building blocks. SIGOPS Oper. Syst. Rev. 41, 3 (March
2007), 59-72.

[16] Cotton, W.R., R.A. Pielke, Sr., R.L. Walko, G.E. Liston, C.J.
Tremback, H. Jiang, R.L. McAnelly, J.Y. Harrington, M.E. Nicholls,
G.G. Carrió.P. McFadden, 2003: RAMS 2001: Current status and
future directions. Meteor. Atmos Physics, 82, 5-29.

[17] Bagrodia, R.; Meyer, R.; Takai, M.; Yu-An Chen; Zeng, X.; Martin,
J.; Ha Yoon Song, "Parsec: a parallel simulation environment for
complex systems," Computer , vol.31, no.10, pp.77,85, Oct 1998

[18] Butkus, A.; Roe, K.; Mitchell, B.L.; Payne, T., "Space Surveillance
Network and Analysis Model (SSNAM) Performance
Improvements," DoD High Performance Computing Modernization
Program Users Group Conference, 2007 , vol., no., pp.469,473, 18-21
June 2007

[19] Jefferson, D.; Leek, J., “Application of Parallel Discrete Event
Simulation to the Space Surveillance Network”, Proceedings of the
Advanced Maui Optical and Space Surveillance Technologies
Conference, held in Wailea, Maui, Hawaii, September 14-17, 2010

[20] Dejan S. MiloJicic, Fred Douglis, Yves Paindaveine, Richard
Wheeler, and Songnian Zhou. Process migration. ACM Computing
Surveys, 32(3):241–299, September 2000

[21] Miguel Campos, L.; Scherson, I.; , “Rate of change load balancing in
distributed and parallel systems ,” Parallel and Distributed
Processing, 1999. 13th International and 10th Symposium on Parallel
and Distributed Processing, 1999. 1999 IPPS/SPDP, IEEE Computer
Society 1999. Proceedings, vol., no., pp.701-707, 12-16 Apr 1999

[22] Hye-Seon Maeng; Hyoun-Su Lee; Tack-Don Han; Sung-Bong Yang;
Shin-Dug Kim; , “Dynamic load balancing of iterative data parallel
problems on a workstation cluster,” High Performance Computing on
the Information Superhighway, 1997. HPC Asia '97 , vol., no.,
pp.563-567, 28 Apr-2 May 1997

[23] Fujimoto, R.M. Time Warp on a shared memory multiprocessor.
Trans. Sot. for Comput. Simul. 6, 3(July 1989), 21 l-239.

[24] Fujimoto, R.M. Performance of Time Warp under synthetic work-
loads. In Proceedings of the SCS Multi conference on Distributed
Simulation22, 1 (January 1990), pp. 23-28.

[25] Frederick Wieland. 1998. Parallel simulation for aviation
applications. In Proceedings of the 30th conference on Winter
simulation (WSC '98), D. J. Medeiros, Edward F. Watson, John S.
Carson, and Mani S. Manivannan (Eds.). IEEE Computer Society
Press, Los Alamitos, CA, USA, 1191-1198.

[26] Jefferson, D.; Leek, J., “Application of Parallel Discrete Event
Simulation to the Space Surveillance Network”, Proceedings of the
Advanced Maui Optical and Space Surveillance Technologies
Conference, Wailea, Maui, Hawaii, Sep 2010

[27] G. Fox, S. Pallickara, M. Pierce, H. Gadgil. Building Messaging
Substrates for Web and Grid Applications. Philosophical Transactions
of the Royal Society: Mathematical, Physical and Engineering
Sciences. Volume 363, Number 1833, pp 1757-1773. Aug, 2005.

