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Abstract— Discrete event simulations (DES) are used in 
situations where we need to understand or describe complex 
phenomena. This paper describes an algorithm for dynamic 
orchestration of stochastic DES. To cope with long execution 
times in stochastic DES settings, we use MapReduce to achieve 
concurrent processing of the simulation on a distributed 
collection of machines. The proposed algorithm proactively 
targets imbalances between subtasks of the simulation. It 
achieves this by accurately predicting future execution times 
for map instances and apportioning processing workloads 
while accounting for the overheads associated with the 
apportioning. Our empirical benchmarks demonstrate the 
suitability of our scheme.  

Keywords: discrete event simulations; MapReduce; load 
balancing; proactive schemes; learning based orchestration  

I.  INTRODUCTION 
Discrete event simulations (DES) are widely used in 

different domains such as weather forecasting, 
transportation modeling, and epidemiology. DES are used in 
modeling complex phenomena by identifying entities of 
interest and all possible interactions (or events) that can take 
place between them. Stochastic DES is a special type of 
DES where such interactions are based on probability 
density functions associated with these interactions. 
Subject-matter experts create these probability density 
functions based on previously observed phenomena. Unlike 
deterministic DES, a stochastic DES results in a slightly 
different outcome every time it executes even with the same 
set of starting parameters. This is because the interactions 
between entities are stochastic. Since DES capture all 
possible interactions between entities, their expressiveness 
and fidelity comes at the price of long execution times. 

The DES we consider in this paper is a stochastic DES 
that models disease spread. To cope with long execution 
times in stochastic DES settings, we use MapReduce to 
achieve concurrent processing of the simulation on a 
distributed collection of machines. The geographic area 
being modeled is split into a set of contiguous sub-regions, 
each of which is managed by a map instance. Each mapper 
generates outputs at the end of each simulation day. The 
outputs represent progression of the disease in the sub-
region managed by a mapper. These outputs are processed 
by a reducer that serves as a coordinator. The coordinator is 
responsible for state synchronization between the mappers 
between successive simulation days. The state 
synchronization includes information about depletion of 

vaccines, movement controls including quarantines, and the 
number of infections. 

The simulation executes as an iterative MapReduce stage 
with multiple, successive rounds of execution. Just as in the 
traditional MapReduce framework, during the Map-phase 
execution, individual mappers do not communicate with 
each other. Each mapper functions autonomously without 
blocking on input/communications from some other 
mapper. 

There are some differences from the traditional 
MapReduce framework. The processing footprint at each 
mapper may be slightly different. The stochastic nature of 
the disease spread, and the concomitant processing loads, 
ensures that imbalances are very likely. The coordinator 
node (which serves as the reducer) is responsible for 
apportioning and migrating processing loads to mitigate 
imbalances; i.e., one of the mappers may take on processing 
loads that belong to another mapper. This reshuffling of 
processing loads is done during state synchronization at the 
end of the simulation day. The process repeats itself in 
iterative MapReduce phases until the simulation terminates 
when the disease has been eliminated. Finally, our map and 
reduce instances are stateful i.e. the result of processing 
depends on the state built up within the computation.  

Synchronization points play an important role in the 
correctness and speed of the simulation. State 
synchronization allows interactions to be consistent and 
similar to what happens in a sequential run of the 
simulation. The speed implications are based on the 
compute imbalances between mappers. Each mapper must 
complete the particular simulation day before: (1) the 
reducer can generate a global state, (2) perform state 
synchronization, and (3) initiate the next iteration of the 
MapReduce state. Due to these synchronizations, the 
simulation is only as fast as the slowest mapper between 
each pair of synchronization points.  

The research objective of this paper is to design a 
dynamic orchestration scheme for discrete event 
simulations. We achieve this by learning from previous 
executions of the simulation, and incorporating this 
knowledge into decisions that guide the distributed 
orchestration. 

A. Research Challenges 
Challenges in accomplishing learning based distributed 

orchestration of DES include: 



 

1. Imbalances in event generation at mappers: Since the 
simulation is stochastic there may be imbalances in 
event generation. If disease is particularly active in a 
sub-region, the number of events that are generated 
within the corresponding mapper may be 
disproportionately high. The greater the number of 
events, the greater the processing overhead, i.e., the 
mapper could be a performance hotspot.  

2. Stochastic movement of performance hotspots: As 
disease moves through the geographical area being 
modeled, the performance hotspots move along with it. 
Disease spread is based on stochastic interactions 
between entities. 

3. Reactive approaches can be limiting. Since 
performance hotspots are short-lived and move 
continually, a reactive approach that attempts to address 
imbalance after the fact may not be effective. What is 
needed is a proactive approach that prevents imbalances 
from occurring. This would need to be based on 
predicting execution times for mappers based on feature 
vectors extracted from the simulation. 

4. Prediction accuracy determines performance. In 
proactive approaches, prediction accuracy for execution 
times determines the efficiency of the orchestration. We 
have to consider not just the average prediction 
accuracy, but also the worst-case prediction accuracy. 

5. Speed of load balancing operation. Load imbalance 
detection and mitigation are in the critical path of the 
simulation. Overheads that are greater than the accrued 
performance gain are inefficient no matter how 
balanced the mappers’ loads are.  

B. Research Questions 
The challenges described above guide the research 

questions that we will explore. These include:  
1. What is the composition of the feature vector that we 

use to make predictions about execution times? Such 
feature identification is a precursor to subsequent 
training of the learning structures and predictions. 

2. How can we balance the competing pulls of knowledge 
management and prediction accuracy? The more detail 
we maintain about the simulation, the more accurate 
our predictions are likely to be. However, there are 
costs associated with maintaining and updating this 
information. Prediction accuracy should not be at the 
cost of delays in making the predictions. 

3. How can we balance the competing pulls of load 
balancing efficiency versus performance overheads? 
Complex load balancing mechanisms that minimize 
imbalances may introduce unacceptable performance 
costs. Since load balancing operations are in the critical 
path of the simulation execution, it is important to 
ensure that the costs for load balancing do not outpace 
any gains due to alleviating imbalances. 

C. Approach Summary 
In this paper we present the design of a framework to 

reduce the execution time of a stochastic DES. We 
accomplish this via distributed orchestration of the DES. 
We express the DES as an iterative MapReduce pipeline 
with each mapper responsible for managing a certain 
geographical scope of the region being modeled. Given the 
large number of synchronization points as well as the 
imbalances that exist between mappers, load balancing 
decisions are key to ensuring faster completion times. Our 
approach is based on a proactive load-balancing scheme that 
tries to prevent imbalances from occurring in the first place. 
This is predicated on accurately predicting future execution 
times for each mapper and making load-balancing decisions 
that mitigate future imbalances.  

Our load prediction approach uses several simulation 
variables as elements of the feature vector used for 
predictions. Elements of our feature vector track several 
variables that capture the prevalence and intensity of the 
disease outbreak. Some of these variables are used in 
programmatic constructs such as loop variables, recursion 
depth, and so on. Since the orchestration and load balancing 
decisions are based on these predictions, a key requirement 
is prediction accuracy. In our work, we use Artificial Neural 
Networks (ANN) [12] to predict the execution time. We 
found that during training of these neural networks, the data 
points relating to execution of the simulation are not 
distributed uniformly. To address this we have multiple 
ANNs and organize them into a Multi-Stage Neural 
Network (MSNN) [13]. The choice of the particular ANN 
with the MSNN for predictions in based on the execution 
time of the previous simulation day. Our experiments 
demonstrate the suitability of our feature vector and the 
MSNN in predicting execution times for mappers 
accurately.  

Load balancing decisions must target imbalances among 
mappers. We achieve this by reapportioning load between 
the mappers. This reapportioning has costs associated with 
it, including state-transfer and creation of additional map 
instances. To minimize these overheads, we designed a P2P 
message passing mechanism among mappers along with 
data compression to reduce communication overheads. 

However, pursuing prediction accuracy and efficiency in 
targeting imbalances without also tracking overheads can be 
problematic. In some situations overheads can dominate 
execution time and, rather than achieving a speed-up as 
more resources are added, performance degradations occur. 
Our work relies on a lightweight scheme for predicting 
execution times, and ensuring that load-balancing decisions 
including reapportioning are done only when the expected 
gains in execution times outpace the overheads. 

D. Paper Contributions 
Our algorithm for orchestration of processing workloads 
learns from the computational footprints of disease 
outbreaks to inform load balancing decisions. The algorithm 



 

focuses on proactive mitigation of load imbalances. The 
approach combines execution time forecasts and imbalance 
mitigation while accounting for overheads associated with 
reapportioning workloads. Our proposed algorithm is 
applicable to other DES as well; our approach to execution 
time prediction copes with situations where some of the 
elements within the feature vector contribute more heavily 
to execution times than others. 

E. Paper Organization 
This paper is organized as follows. In section II, we 

describe the background for our work. We address our prior 
work and inefficiencies in section III; this also provides the 
motivation for the current work. Section IV describes the 
elements that comprise our algorithm. Experimental results 
are described in section V. In section VI, we discuss related 
work. Finally, we give our conclusions in section VII. 

II. BACKGROUND 

A. North American Animal Disease Spread Model 
(NAADSM) 

NAADSM is a simulator for the spread and control of 
livestock diseases [11]. Diseases simulated within 
NAADSM include foot-and-mouth disease (FMD), exotic 
Newcastle disease, pseudo rabies, and avian influenza. It 
was developed collaboratively by the US Department of 
Agriculture, the Canadian Food Inspection Agency, 
Colorado State University, the University of Guelph, and 
the Ontario Ministry of Agriculture, Food and Rural Affairs. 
NAADSM is a stochastic discrete event simulation. 

Examples of events in the simulation are exposures, 
detections, quarantine, test results, vaccination, and culling.  
The probability of various events occurring is governed by 
probability density functions (PDFs), which are input by the 
modeler based on scientific evidence and observations made 
by epidemiologists. Figure 1 sketches the activities that can 
occur on each simulation day. 

 
Figure	
  1:	
  Activity	
  diagram	
  for	
  a	
  single	
  simulation	
  day.	
  
 
The fundamental unit of disease spread and control is a 

farm. Each farm has a state with respect to the disease, such 
as susceptible, infected, or immune. NAADSM simulates 
both spatial and temporal aspects of disease spread and 

control. Examples of spatial activities are movement of 
animals between farms and establishment of disease control 
zones. The temporal aspect encompasses the progression of 
individual farms through disease states, and propagation of 
the disease between farms over simulation days. 

B. Granules 
Granules is a lightweight streaming runtime [10]. 

Granules supports two of the dominant models for cloud 
computing: Map-Reduce [1] and directed acyclic dataflow 
graphs [15]. Granules extends these models by including 
support for streaming datasets, stateful computations, and 
support for cycles within these graphs. Granules 
computations can be developed in C, C#, C++, Java, Python 
or R.  

Computations can retain state across executions and have 
built-in lifecycle support. Users can activate computations 
either periodically or when data is available and enforce 
restrictions on the number of times that a computation can 
be executed. Users can programmatically specify a 
scheduling strategy for computations that is a combination 
along these dimensions. Granules manages the lifecycle and 
finite state machine associated with computations.  

Granules maximizes utilization of a resource by 
interleaving the concurrent execution of thousands of 
computation tasks by scheduling tasks for execution only 
when all its scheduling constraints have been satisfied, and 
keeping them dormant otherwise. The system makes no 
assumptions about the type of resource hosting these 
computations: individual resources could be stand-alone 
workstations or nodes within a cluster, a supercomputer, a 
grid, or a data center (public or private cloud). Resources 
could also be virtualized machines. 

C. NAADSM with Granules 
NAADSM is adapted to work within Granules by 

dividing the geographic area being modeled into a set of 
contiguous sub-regions, each of which is treated as one 
Granules computation. The computations communicate 
once per simulation day, each computation sending out a 
subset of the events it generated that day. The events a 
computation sends out are those that could affect the sub-
regions managed by other computations. For example, a 
movement of animals that crosses between sub-regions must 
be communicated. The first detection of disease inside the 
sub-region must be communicated, because it may initiate 
movement slowdowns across the entire population. 
Establishment of a disease control zone must be 
communicated, because the control zone boundary may 
overlap the border between sub-regions. Quarantining or 
culling of farms must be communicated, because 
neighboring computations need to know which farms are no 
longer capable of receiving contacts from others. 

Once all of the computations have exchanged these 
update messages, they all proceed with the subsequent 
simulation day. 



 

III. PRIOR WORK 
In our previous work [14], we designed several load 

balancing algorithms. Among these algorithms, dynamic 
split and merge (DSM) was the best solution for most 
situations. In DSM, the system checks the execution time of 
each mapper on each simulation day. If there are any 
currently unused (spare) mappers, the slowest mapper(s) 
will be split to make use of the spare mappers. In the 
meantime, if the total execution time of two adjacent 
mappers is less than 70% of the execution time of the 
slowest mapper, the system will merge them together. Using 
this algorithm, the system reaches a dynamic equilibrium.  

However, in some circumstances DSM suffers from a 
performance bottleneck. We divide the simulation work by 
geography, with each mapper managing a geographically 
contiguous area. Therefore when we consider merging fast 
mappers, we can only merge two mappers that manage 
adjacent areas. There might be an idling mapper between 
two slow mappers but we cannot merge it. For example, 
consider the case of 64 mappers where the execution time 
follows the pattern 70 seconds, 0 seconds, 70 seconds, 0 
seconds, etc., plus one mapper that takes 100 seconds. In 
this case, the load balancing efficiency is only about 35%, 
and because the fast mappers are not adjacent to each other, 
DSM cannot improve the performance. 

 
Figure 2: Architecture Overview. The entire simulation 

executes as an iterative MapReduce stage. 

There are many elements to this algorithm that could be 
tuned. The criteria for split and merge operations are simply 
the execution times from the previous simulation day, since 
they are generally close to the execution times of the next 
simulation day. When a mapper is split, the split is done 
such that the two new mappers manage either the same 
amount of area or the same number of farms; these 
approaches split the workload roughly in two, but not 
exactly. Communication overhead starts to impact the 
performance as the number of mappers increases, but we did 
not explore ways to reduce the overhead. Tuning these 
elements would not overcome the bottleneck in the 

algorithm. In our more new algorithms, however, we do 
consider these potential areas for improvement. 

IV. DESIGN OF CURRENT WORK 
Our architecture is depicted in Figure 2. All aspects 

relating to load balancing decisions are made at the reducer. 

A. Proactive Apportioning of Workloads (PAW) Algorithm 
Our PAW algorithm addresses deficiencies in the DSM 

algorithm. If imbalances appear, this algorithm merges the 
entire workload together and splits it equally among all the 
mappers. Ideally, the workload will be completely or close 
to completely balanced in each simulation day. The PAW 
algorithm eliminates the situation where the load is 
imbalanced but the system is unable to alleviate the 
imbalances. An apportioning operation is depicted in Figure 
3.  

 
Figure 3: Example of the PAW algorithm. Each blue block 

represents a mapper. The number within the blocks represents the 
execution time. The PAW algorithm balances the execution time to 

minimize the waiting time of most of the workers. 

There are several important considerations related to 
performance. First, the overhead of the apportioning 
operation must be small. If the operation achieves a 3 
second performance gain but adds 20 seconds of overhead, 
it is counter-productive. In the DSM algorithm, the 
overhead of one load balancing operation was about 0.3 
seconds, which was acceptable when a simulation day lasts 
more than 10 seconds. However, splits and merges were 
occasional operations involving a few mappers. In contrast, 
in the PAW algorithm, all of the mappers perform the 
apportioning operation at the same time. To avoid hitting 
network bandwidth limits, we must find ways to reduce the 
communication time.  

The second key consideration for the PAW algorithm is 
accurate prediction of execution time. In the DSM 
algorithm, the accuracy did not need to be high; we used the 
execution time of the previous simulation day as a very 
rough prediction of the next day’s execution time. However, 
in the PAW algorithm, since each load balancing operation 
involves so many mappers, any prediction error may 
accumulate. For this algorithm, we used an artificial neural 
network (ANN) and multi-stage neural network (MSNN) to 
predict the execution time. The details of these prediction 
mechanisms are introduced in IV.C and IV.D. 

The third key consideration for the PAW algorithm is the 
split mechanism. For instance, if we want to split one 
mapper with a 40%-60% split, how should we do this? In 
the DSM algorithm, we tried splitting the mapper such that 
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the geographical area managed was divided 40/60, and we 
also tried splitting the mapper such that the number of farms 
managed was divided 40/60. These are just approximations 
to truly splitting the workload 40/60.  This drove us to 
develop a better mechanism for the PAW algorithm.  

B. Communication Message Reduction and Compression 
Communication overhead is an important problem in the 

PAW algorithm because all of the mappers pass messages to 
controller, and the controller passes messages back to the 
mappers, when an apportioning operation needs to happen. 
The bandwidth of the network may become a bottleneck. In 
our particular case, before doing any message reduction or 
compression, each apportioning message is about 25Mbytes. 
The message is sent from the mappers to the controller and 
from the controller to the mappers. Since there are 64 
mappers, the total message size is 64*25*2 = 3.2Gbytes. 
Our bandwidth is 128Mbytes per second, so one 
apportioning operation takes 25 seconds, which is 
unacceptable: we must reduce the communication overhead. 

We apply both message reduction and compression 
mechanisms. In the DSM algorithm, a mapper may go 
inactive at the end of one simulation day (because it is 
merged with another mapper) and then be re-activated on a 
later simulation day. When the mapper is re-activated, it 
must be restored with all of the state information it needs to 
return to participating in the running simulation—which 
may be a considerable amount of state information. 
Specifically, the state information would include the current 
disease state of every farm in the area managed, countdowns 
to state transitions, some state information about farms 
outside of the area managed (enough to know which can or 
cannot receive contacts), records of past contacts among 
farms (in case the simulated disease control authorities need 
to do “tracing”, or following the path of infection backwards 
from a detected infected farm), the current shape of the 
disease control zones, and more. In contrast, in the PAW 
algorithm, all of the mappers are active on every simulation 
day. When the workload is “apportioned” among the 
mappers, each mapper can retain much of the state 
information it already has, and send/receive only as much 
information as it needs to give up management of certain 
farms and take on management of certain others. This 
reduces the size of the apportioning message by more than 
half. 

We also use GZIP compression on the messages. There is 
a tradeoff between message size and compression overhead: 
if the message is small, it is not worth the cost of 
performing the compression. We decide whether to 
compress, and what the compression ratio is, based on the 
message size.  

C. Prediction of Execution Times 
It is possible for us to get useful information from the 

simulation as it runs to help predict the future execution 
time. Our prediction uses both the execution time of the 

previous simulation day and some additional features that 
quantify the workload for a particular simulation day; these 
are listed in TABLE I.  

TABLE I.  PREDICTION FEATURES FROM SIMULATION 

Feature Number Feature Content 

1 # farms managed by this mapper 

2 area in km2 managed by this mapper 

3 # adequate exposures 

4 average distance of adequate exposures 

5 average latent period for new infections 

6 # farms detected as diseased today 

7 # contacts traced today 

8 # farms destroyed today 

9 # destruction tasks queued 

10 # adequate exposures by direct contact 

11 # adequate exposures by indirect contact 

12 # adequate exposures by airborne spread 

13 # farms vaccinated today 

14 # vaccination tasks queued 

15 area in km2 of the zones 

We use an ANN as the predictor because it works well for 
non-linear data. Based on experiments to get the best 
prediction accuracy, our propagation method is resilient 
propagation, there is 1 hidden layer with 30 nodes, and the 
condition under which training of the learning structure ends 
is that the error between 10 iterations is less than 1E-6. 

D. Multi-Stage Neural Network (MSNN) 
Acquiring training data for our prediction methods is a 

challenge because we cannot control how the execution 
times are distributed. For instance, there might be too many 
training samples whose execution times (per simulation day) 
are around 3 seconds but too few samples whose execution 
times are around 30 seconds. This data distribution may 
make the model fit better to the short execution time 
samples and not as well to the long execution times 
samples. However, the prediction accuracy of the 30-
seconds samples is more important than 3-seconds samples, 
because the longer the execution time, the more time is lost 
due to prediction errors. We use MSNN to eliminate the 
influence of the abnormal distribution of training data. 

MSNN is a simplified version of a Resource-Allocated 
Network (RAN). The basic idea of RAN is to cluster the 
training data and construct a different ANN for each cluster. 
New incoming training data do not influence the predictions 
for data which is far away. In our case, we do not need a 
complex clustering algorithm because the execution time of 
the previous simulation day is usually similar to the 
execution time of the next simulation day; we can exploit 



 

this to quickly cluster the training data. We construct 4 
ANNs based on the execution time of the previous 
simulation day. For the testing data, we check the execution 
time of the previous simulation day and use the 
corresponding ANN to predict the execution time. 

E. Overhead vs. Load Balancing 
We experimented with a split mechanism based on the 

states of individual farms. From observations of the 
simulation, the current state of a farm affects how much it 
adds to the computational load. For example, an infected 
farm can infect other farms; thus, infected farms add more to 
execution time than susceptible farms. The type of the farm 
can be a factor: for example, some types of businesses have 
higher shipping/receiving rates than others. And while 
airborne spread may influence only the immediate 
neighborhood of an infected farm, direct-contact spread can 
have a wider effect. We constructed a model for all these 
situations, using regression methods to find the best fit. 
Based on the model, we can split the area managed by a 
mapper such that the expected amount of work that will be 
generated by farms on each side of the split is in the desired 
proportion. 

Maintaining this table of farms could potentially increase 
the prediction and split accuracy greatly. However, in our 
benchmark simulation which contains 660,000 farms, the 
overhead for maintaining this table is more than 10 times the 
execution time of the simulation itself. Thus, it is prohibitive 
to maintain such a table even if the load balancing is efficient. 
 

V. EXPERIMENTAL RESULTS 
For our experimental benchmarks we used a NAADSM 

scenario that simulated an outbreak of foot-and-mouth 
disease (FMD). The population was based on Kansas, USA 
data, but up-sampled to 660,000 farms, which is the 
approximate number of FMD-susceptible farms in the 12 
Midwest US states.  

NAADSM as originally written uses a global random 
number generator for stochastic decisions. This presents a 
problem for comparing execution time in various distributed 
configurations. A run performed on a single mapper will not 
behave the same way as a run distributed across two 
mappers, even if the same random number seed is used, 
because the same sequence of samples will not be drawn 
from the random number generator in these two cases. We 
addressed this problem by attaching a separate random 
number stream to each farm, initialized by combining a 
global seed and the farm’s unique ID.  All stochastic 
decisions pertaining to a farm are made using the farm’s 
own random number stream.  Because a single farm is never 
divided across mappers, this scheme guarantees that given 
the same starting seed, the same sequence of events will 
occur in the simulation, regardless of how many mappers 
the run is distributed across.  Note that this was done solely 
for the purpose of forcing identical runs of the simulations 
(no matter how many mappers the run is distributed across) 

so that execution time can be meaningfully compared across 
experiments. It is not a mandatory step for adapting 
stochastic simulations to a distributed setting. 

Experimental results presented in this section were 
obtained on a 78-node cluster connected by a 1 Gbps link. 
Individual machines in this cluster run Fedora OS (version 
20) and have 4-core, 2.4 GHz CPUs and 12 GB of RAM. 

Our performance benchmarks profile our predictions, the 
communication costs associated with our algorithm, and the 
speed-ups generated by our algorithm in physical and virtual 
machine settings. 

 
Figure 4 Prediction Accuracy 

A. Prediction Accuracy 
In our work, we use a MSNN to predict the execution 

time of a simulation day. In our prediction results, our focus 
is on points where the execution time lasts more than 2 
seconds. For points with shorter execution times, prediction 
errors do not influence the total execution time. Our 
prediction accuracy is depicted in Figure 4; on average our 
accuracy is 85.4%. These predictions are fast, on the order of 
100 microseconds. The results demonstrate that our scheme 
produces acceptable accuracy with low overheads. 

Our prediction accuracy does not need to be extremely 
high. First, the overheads associated with getting extremely 
high prediction accuracies can be quite high. Since the 
execution time for each simulation day lasts only for seconds, 
we cannot afford prediction methods with overheads in the 
orders of seconds even if the predictions are perfect. Second, 
even if we predict the execution time perfectly, we might 
still not be able to balance the load perfectly. This is because 
our re-shuffle mechanism is based on herds’ density. For 
instance, if we decide to partition a sub-region using a 70-30 
split, the partitioning will keep 70% of herds in left sub-
region and 30% in the right one. However, the execution 
time is closely but not perfectly aligned with herd density. 
Thus, even if the 70-30 is the perfect prediction result for 
partitioning, we might not be able to partition the sub-region 
to achieve exact execution times. 



 

B. Compression Performance 
We profiled our use of compression to reduce message 

sizes during synchronization. We used gzip as our 
compression algorithm. The synchronization messages are 
highly amenable to compression. We tracked both the 
compression rate (defined here as compressed size divided 
by uncompressed size) and compression time; this is 
depicted in Figure 5. For larger messages, the compressed 
message is about 1% of the size of the uncompressed 
message. The compression time increases almost linearly 
with the message size. When the message size is about 
150Mb, the compression time is about 2 seconds.  

 
Figure 5 Compression rate and time for synchronization messages 

C. Performance of Simulation 
In comparison with the DSM algorithm, the PAW 

algorithm fares better in scenarios with fewer mappers. 
When there are only 2 or 4 mappers, DSM has no way to 
adjust the load even if the system is aware of the existence 
of imbalances. However, the PAW algorithm can re-shuffle 
the load to make it more balanced. The speed-up figure for 
PAW algorithm is shown in Figure 6.  

From Figure 6 we can see that the speed-up for 2, 4, 8 and 
16 mappers scenario is ideal. Furthermore, there is even a 
“super” speed-up for runs with smaller numbers of mappers. 
The reason for this is the changing ratio of execution time to 
communication overhead time. If there are only 4 mappers, 
the split and restore messages for the apportioning operation 
just need to be passed among 4 mappers; but when the 
number of mappers increases to 64, the number of messages 
passed for the apportioning operation increases. With the 
simulation work divided among 64 mappers, the maximum 
execution time of a simulation day is only about 24 seconds. 
The communication overhead time of 3 seconds is more 
than 10% of the execution time. With fewer mappers, the 
execution time of the slowest simulation day is always 
hundreds of seconds. 

 

 
Figure 6 Execution Time and Speed-up for PAW algorithm 

Figure 7 compares the two load balancing algorithms. 
From this figure we can see that the PAW algorithm is 
always superior to the DSM algorithm, but especially so 
when the number of mappers is small. 

 
Figure 7 Speed up comparison for 2 load balancing algorithms 

D. Performance on Virtual Machines 
In this paper, we optimized the execution time for one 

run of simulation. In practice, the stochastic simulation has 
to be run multiple times and the results averaged to achieve 
the most likely result. Since the multiple simulations will be 
executed at the same time, the scale of the cluster will likely 
be extremely large. In practice, we will run these 
simulations in cloud settings. 

In cloud based settings, resources are typically 
provisioned as virtual machines. Thus, we also need to test 
our experiments in virtual machine settings to identify 
performance and execution issues. 



 

 
Figure 8 Execution time comparison w/o VMs for 1 mapper 

scenario 

We also profiled the performance of our algorithm in a 
virtualized environment. Our virtualized environment was 
set up on the same cluster we used for our earlier tests. We 
used the KVM hypervisor on Fedora 20. 

First, we ran a scenario on 1 mapper in the VM setting 
and contrasted the execution time with that in a physical 
machine setting. This is depicted in Figure 8. Virtualization 
overheads become more noticeable during peak loads of the 
simulation. 

 

 
Figure 9 Execution time comparison w/o VMs for 32 mappers 

scenario 

We also executed the scenario with 32 mappers and 64 
workers; this is depicted in Figure 9 and Figure 10. The 
execution time varies considerably from day to day. This 
indicates that the load balancing mechanism is adjusting the 
load frequently and the bottleneck now becomes the load 
balancing efficiency. When comparing virtual machine 
performance with physical machine performance, we found 
a general trend towards lower overheads as the number of 

mappers increased. For example, the overhead (i.e. the 
increase in execution time for the exact same outbreak with 
the same number of mappers) for the 1 mapper scenario is 
26.5%, but for the 32-mapper scenario this reduces to 3.9%, 
and for the 64-mapper scenario the overhead is 5.4%. From 
our experiments we can conclude that a single VM does not 
perform as well as the physical machine, but when the 
number of VMs increases, the performance in the VM 
setting improves in relation to that in the corresponding 
physical machine setting. 

 

Figure 10 Execution time comparison w/o VMs for 64 mappers 
scenario 

VI. RELATED WORK 
Discrete event simulations are widely used in different 

areas. In atmospheric sciences there is the well-known 
Regional Atmospheric Modeling System (RAMS) [16] that 
was developed in 1992. At that time, cluster and cloud 
computing techniques are not popular and thir parallel 
orchestrations were based on MPI. In the circuit design area, 
Bagrodia, R, etc. have designed a parallel simulation 
environment for complex systems named Parsec [17] in 
1998. In this system, the authors consider both conservative 
and optimistic strategies. This approach also considers the 
load balancing problem and communication overheads. The 
Space Surveillance Network (SSN) also uses discrete event 
simulations and a parallelization mechanism has also been 
designed [18]. This parallelizes the primary functional areas: 
Probability of Detection (PoD) which takes around 80% of 
the execution time. Since the PoD computations are 
completely independent, the parallelization is rather simple. 
Another approach is addressed in [19] where a comparison 
of the conservative and optimistic strategies has been 
performed. The authors prefer the optimistic strategies with 
rollback mechanism; however, details of how this was 
implemented are light. 

There are many researchers concentrating on execution in 
distributed systems. Using frameworks is a convenient way 
to approach implementations. Google’s MapReduce 



 

framework is a suitable approach for orchestrating many 
large scale problems. It divides the problems into a Map 
phase and a Reduce phase, and solves each phase in a 
distributed way. Hadoop [2] is the most dominant 
implementation of the MapReduce framework. It 
accomplishes the basic functionality of MapReduce, and 
supports managing, tracking and relaunching tasks. 
Furthermore, an approach to conquer heterogeneity in the 
Hadoop framework is introduced in [3]. However, in these 
frameworks, the results from the Map phase are written to 
disk and used by the Reduce phase directly, and there is no 
support for a cyclic communication pattern. In our 
simulation, each simulation day can be treated as an 
MapReduce cycle. But since we have multiple simulation 
days, the traditional MapReduce framework is not 
sufficient, hence our use of the Granules framework to 
implement a controller-worker model to provide the iterative 
MapReduce structure we need for our research. Granules 
uses NaradaBrokering for stream disseminations [27]. 

Existing research in parallel discrete event simulations 
covers many domains, such as weather forecasting, traffic 
simulation [4], chemical plant modeling [5], urban 
congestion [6], and telecommunication network 
management [7]. The characteristics of our disease spread 
model are similar to these domains in many aspects (e.g., a 
large number of interacting entities, frequent 
synchronization requirements) so some of the load 
balancing mechanisms from the literature can be considered. 
There are several load balancing mechanisms introduced in 
[8] and [9]. However, our requirements for geographical 
contiguousness and frequent communications between non-
adjacent sub-regions for disease spread by direct contact 
(i.e., animal movement) differ from the underlying 
assumptions in this other work. Thus, we needed to develop 
new load balancing mechanisms. 

Failure recovery is another mechanism to address the 
causality problem. It does not require any synchronization. 
When the causality problem occurs, the system will rollback 
the event. This mechanism is efficient when the causality 
problem is rare and the rollback is not expensive. For 
instance, one entity only influences a few adjacent entities 
in one simulation time unit. If the causality problem is 
detected fast enough, the rollback operation only involves a 
few entities. Under this circumstance, the failure recovery 
mechanism provides performance. Fujimoto introduces a 
direct cancellation mechanism in [23][24]. This uses shared 
memory to cancel the incorrect computation of events. Once 
an event depends on another event, a pointer will be left. If 
the system found the first event is incorrect executed, it is 
fast to cancel the dependence event with that pointer. The 
application domain for failure recovery in [25] is aviation. 
In this approach, the system schedules events in a “look 
ahead” manner. The events are dispatched as far ahead as 
possible. This enhances parallelization since the probability 
of rollback is significantly reduced. Moreover, even if the 
rollback occurs, the number of events that need to be rolled 

back is minimal. Thus, the performance of failure recovery 
is improved in this approach. In [26], an improved 
mechanism for rollback recovery is proposed. Instead of 
rollback from the failure status, a shared memory system is 
used to maintain the information. Using a dirty-bit 
mechanism, the information is only updated and scheduled 
when necessary. It reduces the overhead of rollback and 
synchronization mechanism. In our research, since the state 
of each herd may be influenced by all the other herds, the 
rollback cost is too huge. Thus, we have to synchronize 
instead of rollback. 

Thulasidasan et al [8] have focused on the load balancing 
optimization using: even distribution of entities, 
computational load divisibility, and the scatter partition 
strategy; the scatter algorithm clearly outperforms the other 
two strategies. However, in our case, because geographical 
contiguousness of subregions managed by the mappers must 
be preserved, we cannot use the scatter partition strategy. 

Process migration [20] is another common technique to 
implement dynamic load balancing for split based on events. 
In [20], the authors introduce migration requirements, 
mechanisms and characteristics. Also it summarizes many 
examples of process migration. The authors posit that all 
process migration problems can be summarized into when 
to migrate which process where. This ties into distributed 
scheduling policies such as sender-initiated policy, receiver-
initiated policy, and a symmetric policy that combines 
aspects of the previous two. These policies are suitable for 
different environments. Sender-initiated policy fits the 
situation when the network is idling while receiver-initiated 
policy works better when the network is busy. The 
symmetric policy balances the communication overheads by 
looking for idling and busy workers and works well in both 
situations. 

There are several approaches based on process migration, 
that use different criteria to trigger the migration [21][22]. 
Ref [21] outlines a dynamic load balancing strategy. In this 
approach, each processing element maintains two local 
tables with information representing its view of the system’s 
load distribution. This algorithm uses a distributed approach 
to disseminate the global information and a low overhead 
update mechanism. Thus, the load will be migrated among 
processing elements based on the tables. In [22], a 
centralized agent periodically checks for imbalances in the 
system and finds a suitable time for migration. The 
imbalance detection mechanism is based on a threshold. 
Process migration is a good technique when the number of 
tasks is high and the costs for migration low since the entire 
process needs to be migrated. However, in our case, process 
migration is not appropriate given the fine-grained tasks. 

VII. CONCLUSION AND FUTURE WORK 
Proactive load balancing of DES during distributed 

orchestration entails prediction of execution times for the 
constituent tasks and attempting to mitigate imbalances 
before they worsen. Apportioning workloads to mitigate 



 

imbalances care must be done only when the costs for doing 
so do not outpace the expected gains in reduced waiting 
times for sub tasks. Costs associated with ensuring 
prediction accuracy for execution times can be controlled by 
incorporating feature vector pruning schemes; this can be 
accomplished by identifying the predictive value associated 
with features within the feature vector – in the case of 
ANNs this can be determined by the weights associated with 
inputs after the training process is completed.  

Our future work will focus on improvements in 
prediction accuracy and apportioning of workloads. 
Currently, the feature vector for our predictions includes 
simulation output variables. We plan to augment this vector 
with the static and dynamic profile of machines where the 
tasks are executing. This information would be used not just 
for predictions but also to guide apportioning schemes to 
reduce the influence of unexpected slowdowns of machines. 
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