
1/4 

 

Developing and Deploying Applications using Granules 

This document describes the process of developing and deploying applications using Granules. In both 
cases Granules incorporates support for utility classes whose behavior may be extended to suit 
specific needs. 
 

1 Developing applications  

Granules simplifies the process of developing applications. Developers simply extend the 
MapReduceBase class. This class implements functionality that encompasses both the map and reduce 
roles of a computation. One requirement is that the derived class have exactly one constructor, which 
does not take any arguments. Developers of the derived class only need to implement the execute() 
method. Typical steps involved in implementing this method include initialization of the datasets and 
data structures, processing logic, and specification of a scheduling strategy. 
 

1.1 Initialization 

Typically, depending on the type of the dataset, initialization of the datasets involved in the processing 
is performed automatically. The designer simply specifies the identifiers for the dataset. Initializations 
of the data structures needed by the computation can be performed either in the null constructor or in 
the execute() method. In the latter case, care must be taken to ensure that the initializations are 
performed only once across successive invocations of the execute() method. 
 

1.2 Processing Logic 

The processing logic within the execute()method is domain-specific. This processing would involve 
either the generation of results, or the management and collation of previously produced results. In 
the reduce role it is also possible to check if outputs have been received from all the preceding maps 
in addition to discarding any duplicate results that were generated.  
 
Generation of results is easy, and the system allows entities to attach different payloads to these 
results. The system currently allows for the payloads for these results to be <key, value> pairs where 
the elements of these tuples could be objects that encapsulate compound data types. The system 
allows  instances, arrays([]), and 2D arrays ([][]) of primitive data types such as int, short, long, 
double, float, and char to be attached as payloads of these results. The system handles the 
marshalling, and un-marshalling, of these payloads automatically. 
 
The processing logic also needs to cope with exceptions that will be thrown as result of the processing. 
These exceptions could result from problems with the datasets, marshalling issues and networking 
problems. 
 

1.3 Scheduling strategy 

A computational task can change its scheduling strategy during execution. This change is reflected 
during the next iteration of the execute()method. The system enforces the newly created scheduling 
strategy as soon as the current iteration of the execute() method terminates. Computational tasks 
that have specified a scheduling strategy that constitutes either a stay-alive primitive, or implies a 



2/4 

certain number of iterations, can assert that its termination condition has been reached. At this time, 
the computational task is scheduled for garbage collection as soon as control returns from the 
execute() method. 
 
 

2 Deploying applications using Granules      

Granules provides a helper class -- the InstanceDeployer -- to enable applications, and the 
computational tasks that comprise it, to be deployed on a set of resources. This class performs several 
operations related to initializing communications, resource discovery, and deployment of 
computations. It is recommended that a deployer be created for each application. This can be done by 
simply extending the InstanceDeployer.  
 

2.1 Initializing Communications and Resource Discovery  

The first step that an application deployer needs to perform is to initialize communications with the 
content distribution network (NaradaBrokering). This can be performed by invoking the constructor for 
the base class (InstanceDeployer) which takes a set of properties as its argument. This is typically 
done by invoking the super(streamingProperties) in the derived class’s constructor. Some of the 
elements that are typically part of this set of properties include the hostname, port and transport type 
for one of the router nodes within the content dissemination network. Depending on the transport over 
which communications take place there would be additional elements that may need to be specified. 
For e.g. if the SSL communications are used, additional elements that need to be specified include the 
location of the truststore and keystore that would be used for secure communications. 
 
Once communications have been established, Granules automatically discovers resources that are 
currently available. This list could be periodically refreshed should the need arise. 
 

2.2 Initializing and Deploying Computational Tasks  

The developer then needs to provide a method that initializes the computational tasks. This involves 
one or more of the following -- 

1. Initializing the Processing Directives associated with an instance: These directives are used to 
encode instance specific information that is accessible only to the instance in question. 

2. Specification of the datasets and collection associated with the computation: Granules is 
responsible for configuring access to these datasets. 

3. Linking of the Map-Reduce roles: Granules ensures that once linked results produced by the 
maps are automatically routed to the appropriate reducers. 

4. Specifying the scheduling strategy for the computational tasks: By default, the exactly-once 
scheduling strategy is used. 

5. Distribution of datasets across these instances: Granules incorporates utilities that allow this 
distribution to be performed in an efficient fashion. 

 
To deploy an application, the developer only needs to invoke the deploy() method in the 
InstanceDeployer. This method deploys the computational tasks on the set of resources that were 
discovered during the initialization phase. 
 



3/4 

2.3 Tracking/Steering a deployed Application 

The InstanceDeployer implements the JobLifecycleObserver interface which allows one to track the 
status of multiple jobs, and the computational tasks that comprise them. Classes that extend the 
InstanceDeployer have the option to override methods specific to the JobLifecycleObserver interface. 
Specifically, for a given Job, Granules maintains its registered JobLifecycleObserver and invokes 
methods on this observer whenever there is an update to the deployment or execution status of the 
computational tasks that comprise it. 
  
Associated with each Job, Granules maintains a ProgressTracker which maintains information about 
the execution state of each of the computational tasks that comprise the application. The 
LifecycleMetrics associated with every computational task includes information about: 

1. The arrival time for the computational task. 
2. The queuing overhead for the computational task. 
3. The total CPU-bound time for the computational task across multiple iterations (if there are 

any). 
4. The processing time for the computational task 
5. The current status of the computational task {Awaiting Data, Queued for Execution, 

Executing, Terminated, Successful, FAILED}    
The status of a Job is the cumulative status of the computational tasks that comprise it.  
 
The InstanceDeployer also incorporates methods for tracking/steering a computation. There are 
methods to refresh the status of a specific computational task or the entire Job. These methods result 
in updates to the lifecycle metrics of the relevant computational tasks. Additionally, Granules also 
allows computational tasks to be aborted when they are in execution. The system allows either a 
specific computational task to be suspended or the entire Job.  
 

3 Instructions to Run the Demos 

1. First, download NaradaBrokering and start the broker 
You can download the software from http://www.naradabrokering.org . Once you have 
downloaded the software, go to the bin directory and click on the startBroker.bat file or execute 
the ./startBr.sh command. 
 

2. To configure the Resource, please go to the GRANULES_HOME/config directory. Edit the 
ResourceConfig.txt file to  

a. Reflect the broker’s host, port and transport information 
b. You can also change the number of threads spawned by the resource. Please set this value 

carefully. 
 

3. To run the Resource go to the GRANULES_HOME/bin directory and launch the appropriate script.  
a. In case of multiple resources on different machines that mount the same file-

system, you do not need to create multiple .bat files if you are OK with the all the 
resources connecting to the same broker. Otherwise, you could set-up a broker 
network and change the broker arguments in the resource-configuration files 
appropriately. 
 

4. In the cgl.granules.samples directory there are several examples that have been organized as 
packages. These reflect different capabilities provided by Granules. There is a XYZDeployer.java 

http://www.naradabrokering.org/�


4/4 

in each of these packages. In all cases the arguments for these classes is the hostname and 
portnum of the broker that you need to connect to.  
 

5. When each XYZDeployer runs it prints out the set of commands that you can enter in the SHELL. 
 


	1 Developing applications 
	1.1 Initialization
	1.2 Processing Logic
	1.3 Scheduling strategy

	2 Deploying applications using Granules     
	2.1 Initializing Communications and Resource Discovery 
	2.2 Initializing and Deploying Computational Tasks 
	2.3 Tracking/Steering a deployed Application

	3 Instructions to Run the Demos

