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Abstract—The ability to analyze streaming data in real-time
is vital in systems that process data from health sensors. These
systems need to build and maintain state, as well as preserve
this state in the face of system failures. In this work, we
focus specifically on Electroencephalogram (EEG) signal analysis.
EEG analysis may be used to determine the onset of seizures,
migraines, user intent, and even general mental status. Our
focus in this paper is to analyze EEG signals to determine
user intent. This concept is the backbone of Brain-Computer
Interfaces (BCIs), which can allow users with locked-in syndrome
to interact with the world via EEG signals. We use an R-
based EEG classification system and the Java-based Granules
framework to distribute classification processes and manage
communications. Through this approach, we can benefit from
the ability to aggregate EEG data across many users while
maintaining real-time guarantees.

Index Terms—Sensors, Health Monitoring, EEG, BCI, Dis-
tributed Systems, Granules, Replication, Fault-tolerance

I. INTRODUCTION

Sensors designed to monitor health are a standard in the
diagnosis and monitoring of many health conditions. As the
cost and size of these sensors decreases, the feasibility of
monitoring patients as they go about their daily lives increases.
Should a patient have multiple live sensors, the data gathered
from these disparate devices can be combined to gain a clearer
picture of overall patient status.

These health monitoring systems would need to be able
to build state over time, as well as maintain this state in
the face of failures. As an example, consider a sensor which
is monitoring heart rate. While heart rate naturally increases
when exercising, a sudden, rapid heart rate may be a sign of a
heart attack. Should the system suffer a failure and lose state,
natural increases in heart rate may be incorrectly classified as
a potential heart attack. It is important that we work to develop
a robust system capable of handling sensitive, streaming data
in a timely manner.

In this work we focus on analyzing Electroencephalogram
(EEG) streams, a major component of Brain Computer Inter-
faces (BCIs). BCIs allow users to interact with their environ-
ment using only their thoughts. BCIs can be used for computer
interactions, such as a speller [1], moving a cursor [2], or even
to navigate a wheelchair through a crowded room [3]. One goal
of Colorado State University’s Brain Computer Interfaces Lab
(http://www.cs.colostate.edu/eeg) is to provide a cost-effective

BCI framework driven by analyzing raw EEG data. Here, we
build on this idea by pushing EEG analysis to a cluster with
multiple users being analyzed concurrently. Not only is this a
more efficient use of resources than having a single dedicated
system per user, but it allows allows aggregation of raw EEG
data. Such aggregation has the potential for analysis on a much
broader scale over a much shorter time period than any single
lab would be able to collect.

EEG streams exhibit many complex characteristics. For
example, EEG streams are generally very noisy. EEGs are
gathered in a non-invasive manner, so signals are only captured
after traveling through the meninges and scalp. This means
they are very weak and dispersed when first collected. External
noise can also be a problem: when recording indoors, it is
possible to see a relatively high magnitude 60 Hz component
due to electrical currents in the environment (in the US). EEG
signals can also be completely overwhelmed by noise from
muscle movements: larger movements such as eye blinks,
and even less obvious rapid eye movements may generate
noise. The amount of data produced can also vary drastically
depending on the amplifier used to collect the signals.

High end amplifiers may have as many as 64 or 128
electrodes and sample at a rate of 1024 Hz. While these
amplifiers are currently very expensive (roughly $60,000), we
can expect these costs to decrease. Other amplifiers, such
as g.Tec’s g.mobilab+ are designed to be small, mobile, and
inexpensive. They may have only 8 electrodes and a sampling
rate of 256 Hz. The data we use here was collected using a
NeuroPulse Mindset 24R amplifier with 19 electrodes and a
sampling rate of 512 Hz. This data was gathered by the CSU
BCI Lab.

This paper expands upon our previous work [4] where we
found the limits of our network to be the major bottleneck.
When classifying 150 EEG streams simultaneously, we were
generating over 1TB of data per 24 hour period. In this work
we use the same data in order to provide a fair comparison of
the scaling capabilities of our new approach.

Here we develop a system which is a better fit for BCI
implementations today. Each user has a personalized model
to classify incoming data and is able to provide fresh training
data to their model as needed. This is beneficial as EEG signals
may change over time due to user fatigue or loss of attention.
Each node in our cluster is also expected to host a single



dedicated training instance responsible for providing a generic
classification model to users joining the node and regularly
update the generic model on training data that individual users
have submitted.

With our approach, every node in the cluster will slowly
shift to reflect the types of users connected to it. This opens
the possibility of allowing users to select which nodes host
their computations based on the accuracy of the generic model
from each node. Using this method, we can find a balance
between leveraging large quantities of sample EEG streams
to determine generic models and allowing users to customize
individual models to provide a better fit as needed.

A. Approach

We use an R-based [5] classifier as the backbone of this
system. While R is a good language for our classification tasks,
it is designed to be run in a single thread, which complicates
attempts to host multiple user computations on a single node.
If we only support one user per node, nodes are underutilized
and we cannot scale well. R contains several packages to dis-
tribute computations [6], [7], but our previous work [4] found
that the time to initiate distributed computations precludes the
ability to process data in real-time.

A further disadvantage of R is the lack of support for tablet
devices. Amplifiers such as the g.mobilab+ rely on a bluetooth
connection to transmit data from the actual amplifier to a
recording device such as a tablet computer or smartphone. This
design allows a much more mobile EEG collection experience
than previously possible, a benefit for mobile BCI applications
such as a wheelchair navigation. Ideally, a user would only
need a tablet or smartphone to handle EEG collection and
classification. R is currently unsupported on Android, iPhones,
and iPads. This leaves the majority of tablet devices useless in
this setting. These devices are all capable of running Narada
Brokering [8], allowing them to connect to a Granules cluster
for classification.

One weakness of Granules is the lack of fault-tolerance.
State is held in memory and is lost during failures. One goal
of this work is to incorporate fault-tolerance into Granules.
While other cloud frameworks such as Hadoop [9] have fault-
tolerance implemented through a distributed file system (such
as HDFS [10]), Granules is designed to process streaming data
so cannot leverage this approach. In this work we explore some
basic fault-tolerance approaches, as well as develop BCI/health
sensor specific schemes for use in the Granules runtime.

One challenge is that fault-tolerance generally implies an
increased amount of network communication and processing
at every node in a cluster. While we need to ensure that failures
are detected and resolved in a timely manner, we also need to
make sure that we are not restricting the ability of the cluster
to perform its primary task of EEG classifications in real-time.

The rest of this paper is organized as follows: in section
II, we describe all the tools used in this work, as well as
introduce our dataset. Section III describes the framework of
our fault-tolerance schemes, along with tests outlining failure
detection performance and an analysis of failure probabilities.

We then perform some small-scale tests in section IV, moving
on to full-scale cluster tests in section V. After this we
discuss EEG/health stream specific fault tolerance approaches
in section VI before discussing related works in section VII
and then concluding in section VIII.

II. BACKGROUND

A. Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired
machine learning algorithms. They are capable of modeling
and classifying complex signals, so they are a good choice for
analyzing raw EEG signals. Here we use a group of experts
approach where we train several ANNs independently, then use
their combined results to determine a final prediction. Since
the networks are trained independently, there is a good chance
they have all ‘learned’ to model slightly different aspects of
the problem space. We combine the predictions of this group
of ANNs to achieve a better overall prediction than a single
neural network.

To avoid over-fitting, we limit the amount of training each
network receives. While this seems counter-intuitive, we can
actually achieve better results by doing this. We make sure the
network does not develop a bias towards the training data and
can still process new, unseen data. This approach, called early
stopping, also allows us to train the networks more quickly
and efficiently, cutting down on the time it takes to initially
train a group of experts as well as the amount of time it takes
to update when a user sends new training data.

B. Granules

Granules [11], [12] is a distributed stream processing system
designed to perform arbitrary computations on streaming data.
Computations build and maintain state across multiple rounds
of execution, entering a dormant state with a reduced resource
footprint between these rounds of execution. Granules also
allows computation specific scheduling constraints across three
dimensions: number of iterations, time interval, or as data
is available. This is particularly useful for monitoring health
sensor streams where, a computation should activate whenever
the sensor sends data to be processed. If no updates are
received within a given interval, possibly due to sensor failure
or user emergency, an alternate branch of the computation can
be accessed either alerting of a sensor failure or initiating an
emergency response to aid a user.

Due to the ability to enter a dormant state between rounds
of execution, Granules is capable of interleaving hundreds of
computations on a single machine. This also means that the
failure of a single machine impacts multiple computations,
making fault-tolerance a necessary and challenging task. Here
we explore fault-tolerant stream processing schemes, moving
from relatively simple approaches to more complex schemes
designed specifically for health sensor monitoring applications.

C. R Programming Language

R is an interpreted language designed to perform matrix
computations efficiently, making it an ideal language for neural



network code. We are using neural network code that has been
well-tested and used in previous BCI experiments [4].

We have two distinct R applications: a user instance and
a generic trainer instance. The user instance is responsible
for classifying streaming EEG signals and updating the model
when new training data is sent to it. The generic trainer
instance needs to perform initial batch training from disk, as
well as perform batch processing of newly submitted user
data on a regular schedule. The trainer also needs to be
able to provide the generic group of experts on demand for
distribution to new users joining the node.

In order to handle communications between R and the Java-
based Granules framework, we use a bridging framework de-
veloped for Granules [13] to handle communications between
Java and R.

D. Fault-Tolerance in Granules

Here we propose fault-tolerance schemes for use in the
Granules runtime. Our current focus is fault-tolerance through
the use of replication. In systems that do not process streaming
data it is possible to simply restart a computation in the face of
failure. If this approach is applied to a streaming environment
there is a risk of: (1) losing data while detecting failure and
starting up a new computation and (2) loss of state. In many
cases it is infeasible to restart a sensor-based computation
from a blank state. To reduce the amount of data lost, backup
computations may be started beforehand to maintain a stateful
copy of the computation on different machines. The cost of
such an approach is an additional strain on the cluster as we
now need to keep extra copies, or replicas, of a computation
running at all times. Depending on the type of replication used,
we may be increasing network, memory, and CPU load with
every replica.

We focus on fault-tolerance through replication. First, we
perform a baseline study of replication schemes. We start
with a purely passive approach, where replicas are started up
and then enter a dormant state until needed then we move
on to a purely active approach, where all replicas receive all
data in parallel. Neither of these basic approaches is likely
to be the final solution to fault-tolerance for EEG analysis.
A purely passive approach is likely to miss incoming data
when detecting and verifying failures, and a purely active
approach means that we will be able to support less concurrent
users overall. The later sections of this paper are devoted to
analyzing more complex approaches to fault-tolerance through
replication specific to streaming EEG/health sensor data.

E. Dataset

In this work, we classify EEG signals generated by an able-
bodied adult male. Four tasks are recorded from the user:
imagined right hand movement, imagined left leg movement,
counting backwards from 100 by threes, and imagining a
spinning computer. The dataset is separated into five different
recording sessions, where each recording session has 10 five
second recordings for each of the four tasks. We use four of our
five datasets for training, reserving the fifth for testing. This

allows us to evaluate the accuracy of our trained networks by
ensuring that only unseen data is sent to be classified.

The EEG data was gathered using a NeuroPulse Mindset
24R amplifier with 19 electrodes arranged in the international
10-20 specifications. In general, more electrodes can lead to a
more fine-grained view of brain activity, which in turn makes it
easier to determine exactly where EEG signals are originating
and how the signals are propagating across the scalp. On the
other hand, more electrodes also means more data that needs
to be processed at every timestep, which can potentially slow
down the classification process and lead to an overburdening
of the network supporting classification.

F. Online Batch Learning

It is likely that a user’s EEG signals may change over
time, possibly as the user grows bored and starts to pay less
attention to the tasks or due to mental fatigue. It is beneficial
to periodically have the user record a fresh set of training data,
then update the model used for classification.

In our experiments which involve fault tolerance, we need to
ensure users maintain a consistent experience through failures.
To do so, all replicas need to have a consistent view of
the users state. This state consists of the current group of
experts the user is relying on for classification. When the user
initially connects to the cluster, the primary requests a generic
group of experts, and this group of experts is shared with all
replicas. When the user submits additional data for training,
this training takes place at only the primary, and the updated
group of experts is passed to the replicas once training has
been completed. Should a failure occur while training is taking
place, an update may be lost. State is preserved as the client
is able to determine if training has started but not completed
when a failure occurs. In this case, training can simply restart
at the new primary.

III. FAULT-TOLERANT STREAM PROCESSING

A heartbeat system underpins replication in Granules. This
system monitors the state of all registered machines in the
cluster, allowing the system to function in a fully distributed
fashion – no single node needs to orchestrate communications.
While information such as processing load and networking
delays may also be useful and help to provide robust behavior,
we are currently only monitoring liveness, ensuring a compact
heartbeat message size to control the CPU, memory, and
networking footprint of the HeartBeat scheme.

A. HeartBeat Groups

In our HeartBeat scheme, we introduce the notion of heart-
beat groups. A heartbeat group is a subcluster of machines
that send heartbeats together, as well as checks for machine
liveness in sync. For example: in a system with two heartbeat
groups, A and B, all machines in group A will send heartbeats
to group B in the same timestep. As this is implemented in
Granules, we can take advantage of its communications system
which allows multiple machines to subscribe to a single stream
of data, such as “heartbeats/groupB”.



TABLE I
THIS TABLE DESCRIBES THE HEARTBEAT APPROACH IN GRANULES WITH
6 HEARTBEAT GROUPS. FOR EACH TIMESTEP (T*), EVERY GROUP SENDS
A HEARTBEAT TO ONE OTHER GROUP. AFTER SENDING A HEARTBEAT TO

GROUP 0 (BOLD AND ITALICIZED), IT PERFORMS A CHECK TO MAKE SURE
ALL EXPECTED HEARTBEATS WERE RECEIVED.

T0 T1 T2 T3 T4 T5
0 → 1 0 → 2 0 → 3 0 → 4 0 → 5 0 → 0
1 → 2 1 → 3 1 → 4 1 → 5 1 → 0 1 → 1
2 → 3 2 → 4 2 → 5 2 → 0 2 → 1 2 → 2
3 → 4 3 → 5 3 → 0 3 → 1 3 → 2 3 → 3
4 → 5 4 → 0 4 → 1 4 → 2 4 → 3 4 → 4
5 → 0 5 → 1 5 → 2 5 → 3 5 → 4 5 → 5

At every timestep T, each group pushes heartbeat data to the
next group, and one group is responsible for checking liveness
of the whole system. While every machine is checked for
liveness every T, not every machine in the cluster is checking
liveness at a specific time t.

This concept is shown in more detail in Table I. In this
example we have six heartbeat groups, numbered 0-5. This
table walks through 6 timesteps, showing where messages are
sent for each timestep. For example, in timestep T3, group
4 is sending heartbeats to group 2, while group 2 is sending
heartbeats to group 0. After a group sends heartbeats to group
0, it performs a check to make sure that all the nodes it has
previously received heartbeats from has sent a heartbeat in the
last 6 timesteps – since the last time this check took place.

An additional variable is S, the amount of timesteps in
which a node is in a state of “failure suspicion”. In this state,
the machine has missed some number of heartbeats (up to
S), but the system has not yet declared the node dead. This
allows for drift in clocks, where a node may miss sending
a heartbeat by a fraction of a second, as well as possible
network congestion. This also helps to limit the number of
false positives, or erroneous failure notifications, generated by
the cluster.

Consider a cluster of N machines with M heartbeat groups,
which has an update rate of T and failure suspicion count of
S. In a best case scenario it will take TSM time in order
to identify failures. In a worst case scenario, it could take
(M − 1)T + TSM time to detect failures.

The HeartBeat scheme underlies all computation commu-
nications in a fault-tolerant environment. Not only can a
poorly configured HeartBeat scheme impair all communi-
cations across the cluster, but the HeartBeat timestep and
duration of the failure suspicion state define the amount of
time the system needs to identify failures.

As T decreases, liveness checks are performed more often.
This does mean the system will recognize failure and recover
from it faster, but it also means the network is more likely
to become congested with heartbeat messages. Should the
congestion interfere with the messages getting through, delays
could cause the system to emit false positives, deciding that a
machine has failed when the messages were only delayed.

If we increase T, the amount of heartbeat messages sent
throughout the cluster is decreased, which keeps the system

from becoming congested and leads to less false negatives. On
the other hand, it also has the drawback of a proportional delay
in recognizing failed machines, leading to delays in fail-over
actions.

S also has a strong impact on the speed of failure detection.
Where T determines how often heartbeats are sent, S deter-
mines how many iterations of T are allowed to pass before a
node is officially declared dead. The impact of S is actually
dependent upon N, the number of heartbeat groups. To clarify,
a given group will do a full check of the system every N
timesteps. When a node has failed to send a heartbeat within
those N timesteps, it enters the failure suspicion state. Once
within this state, it has S full system checks to start responding
before being declared dead. This means that it will take at
least SN timesteps before the node is officially declared dead.
In walltime, this results in a delay of SNT before fail-over
actions can be taken.

B. Failure Analysis

It is difficult to keep track of how many replicas from
a single computation have failed in large deployments. This
section is devoted to a discussion of the probability of losing
all replicas of a computation. We look at both the probability
of a computation failing entirely given an individual machine
failure rate, as well as the number of lost computations as
machines fail.

1) Individual Computation Failure: For the purposes of this
discussion, we are going to assume that the probability of
machine failure is independent; i.e., the probability of machine
A failing does not relate to the probability of machine B failing.
This is not necessarily true in cases where machines on a
rack share the same power strip. Rack-awareness in replica
placements can alleviate this.

Our computations have a replication level of 3, spread
across 3 machines: A, B, and C. For this experiment, we
assume that each machine has an X% chance of failure. This
includes all hardware, as well as network connections. The
overall probability of failure of an entire computations is:
P (Afail)∗P (Bfail)∗P (Cfail). For a machine failure rate of
1%, the complete failure of a computation has a probability
of only 0.0001%.

Even with high machine failure rates (such as 50%), we see
a very low probability of losing a specific computation entirely
(only 12.5%). While this is a relatively simplistic view, through
rack awareness and sheer numbers it is possible to assume
that we can reduce this problem to the form of P (Afail) ∗
P (Bfail) ∗ P (Cfail), where every probability is independent.
Once we get to this point, the probability of complete failure
quickly decreases. Implementing the ability of the system to
re-replicate, e.g. add a replica on machine D should machine
A fail, reduces the probability of complete failure even further.

2) Computation Failure Rate: We now look at the probabil-
ity that computations will fail should Y machines fail. For this
section, we are assuming that there are U unique computations,
and N total machines with a replication level of 3.



While there are U unique computations, there are actu-
ally 3U computations in the system in total (due to the
replicas). This means that each machine will have about 3U

N
computations on it. As a note, we are assuming that the
machines are equally loaded. For both a best and worst-case
scenario, replicas for at least 3U

N computations are all co-
located. Essentially, machines A, B, and C would be loaded
with exactly the same set of computations. In the worst-case
scenario, 3U

N computations would fail after just 3 machines
failed. In a best-case scenario, 2U computations could be lost
before a unique computation failed entirely. Since there are
3U
N computations per machine, this means that we can still

run when 3U
N ∗ Y = 2U , or when Y = 2

3 ∗N machines fail.
This means that when the 2

3N +1 machine fails, we will lose
unique computations completely.

Looking further into this behavior, we can derive the
expected average failure given Y, N and U. For Y failed
machines, the probability of any given computation failing
is Y

N . Since each unique computation is replicated 3 times,
all 3 replicas need to fail for the computation to fail. The
probability for the complete failure of a computation is 3 Y

N .
To find the average number of failures, we multiply by the
number of unique computations: 3 Y

N ∗ U .
To test this theory, we work with a respiration dataset [14],

[15] which was collected by Dr. J. Rittweger, at Institute for
Physiology, Free University of Berlin. This dataset monitors
thorax extension at 10Hz. To simulate a live dataset, we stream
the inputs every 100ms, matching the original 10Hz frequency.

Thorax extension directly relates to breathing rates, moni-
toring the rise and fall of a patients chest while breathing. This
information can be used on both a large scale “is the patient
still breathing on their own?” to a more refined scale “is the
patient awake or asleep?” It is further possible to determine
which stage of sleep the patient is in. This type of data can be
used to monitor patients just out of surgery, or even to conduct
sleep studies. In these tests we want to ensure that responses
are returned in real time (before the next set of output is pushed
out, or within 100ms) as well as ensure that the computations
continue to run even in the face of failure.

Thorax extension data is shares several characteristics with
EEG analysis. We need to build state over time to properly
analyze thorax extension, and timeliness is an important factor
when determining patient status. We use thorax extension data
in these experiments because the data sent is much smaller
than the typical EEG packet, allowing us to more easily test
replication guarantees in large deployments.

In this set of experiments, we are looking at the number
of failed unique computations given the number of failed
machines. We use 24 nodes (N), 6 groups (M), a timestep (T)
of 2s, and a death suspicion count (S) of 2. We deploy 800
unique computations (U) to this cluster, meaning each machine
has 3U

N , or 100 computations running on it. In this experiment,
we are looking at the number of failed unique computations
after killing 5, 8, 12, and 18 randomly selected machines.
Using the equations above, we can show the theoretical best,
average, and worst cases alongside the experimental best,

TABLE II
PREDICTED AND ACTUAL COMPUTATION LOSSES AS MACHINES FAIL

Predicted Actual
Machines
Failed

Best Average Worst Best Average Worst SD

5 0 7.23 100 0 0.10 1 0.32
8 0 29.63 200 0 40 200 69.92
12 0 100.00 400 0 90 200 73.79
18 200 337.50 600 200 330 400 67.49

average and worst cases. We ran each test 10 times, recording
the number of computations lost.

From Table II, we see that we managed to hit the best case
scenario in every experiment, and we usually stay below the
worst case. We had almost no losses when almost a quarter
of the machines had failed, and we still maintained 50%
functionality even after 75% of the cluster had died. Even
in the case of catastrophic failure, we are seeing functional
behavior. We see increasing standard deviation in failure
amounts up to losing 50% of the network. This seems to be
a combination of the fact that computations are usually lost
on the order of 100s at a time, as well as the increasing gap
between best and worst cases, leaving more room for variation.

IV. SMALL CLUSTER TESTING

Before moving up to a full-size cluster, it is important to
determine our maximum support capabilities before introduc-
ing the extra communications overheads inherent in larger
clusters. First, we determine the maximum number of users
we can stably support on a single machine, then we move to
a small cluster of 3 machines to test our ability to support
fault-tolerance on this scale.

A. Experimental Setup

For these experiments, we are using nodes with 2.4 GHz
quad-core processors and 12 GB of RAM. Each node hosts a
Granules Resource [11], [12] which manages all computations
on the machine. The resource is connected to a stream routing
broker [8] which resides on another identical machine. EEG
signals are pseudo-streamed from a third identical machine
which is responsible for recording round-trip classification
times.

For these experiments the generic trainer is deployed first,
and immediately begins batch training from the training sets.
Once it has finished, the user computations are launched and
receive an initial, generic group of experts from the trainer.
For our fault-tolerance experiments, we additionally launched
a HeartBeat Listener on each node. With only 3 nodes,
we set M to 3. This means that each node is within its own
heartbeat group. In these tests we are focusing on a best-
case scenario, so no further training is performed. We simply
determine the maximum number of users we can support while
ensuring that classifications are returned in a timely manner.

We determine that a user cannot be supported when classi-
fications fail to return before the next segment of EEG signals
are sent out. As we are classifying 250ms streams, when



TABLE III
RESPONSE TIMES FOR 30 CONCURRENT USERS ON A SINGLE NODE (MS)

Mean (ms) Min (ms) Max (ms) SD (ms)
23.600 7.026 484.669 15.419

TABLE IV
RESPONSE TIMES FOR 35 CONCURRENT USERS ON A SINGLE NODE (MS)

Mean (ms) Min (ms) Max (ms) SD (ms)
Overall 26.292 6.993 9564.874 97.953
Passing 23.225 6.993 249.852 17.172
Failing 1283.038 250.638 9564.874 1497.543

classification responses take longer than 250ms we consider
them failed classifications.

We launch a number of independent users who indepen-
dently stream EEG signals and record round-trip classification
times. These signals are sent out every 250ms, but only after
a classification for the previous timestep has been returned.
This means that if a classification fails the next signal is
sent after receiving the previous classification. While this is
not what would occur in a real-life scenario this helps to
prevent network congestion and reduce confusion over round-
trip timing of individual EEG streams, both of which are
beneficial when stress-testing the system. Each user submits
5000 EEG streams for classification, roughly 21 minutes of
continuous EEG signals.

B. Single Machine Stress Tests

For this test we focus on a single machine which has a single
generic trainer instance. We are attempting to determine the
maximum number of concurrent users we can support before
we start to breach our 250ms real-time guarantee. Initially,
we attempted to support 30 individual users – a significant
increase over the maximum 17 users found in our previous
experiments. We found that only one message out of the
150,000 recorded failed to return to the user in time. Detailed
results are shown in Table III

On further analysis, we found that this failed message was
among the first ones sent by a user. In the next test we added
5 extra users; with 35 users, we saw an increase in the number
of failed messages, from 1 to 426 failed messages, or a failure
rate of 0.2% instead of 0.0006%. Overall statistics can be seen
in Table IV. In our best case, we can return results in just under
7ms, but in the worst case, responses took over 9.5 seconds.
In the same table, we also show a break down for the passing
and failing responses.

Analyzing the probability density of the passing response
times (Figure 1), we do see some promising trends. The
majority of passed classifications return to the user in under
50ms. While we do have a worst-case scenario of 9.5 seconds,
the majority of our computations are well within the passing
range.

Our worst-case response time was around 9.5 seconds, our
overall failed classification rate was still relatively small, at
only 0.2%. To stress the system even further, we decided to run
one more test with 40 users per machine. The results for this

TABLE V
RESPONSE TIMES FOR 40 CONCURRENT USERS ON A SINGLE NODE (MS)

Mean (ms) Min (ms) Max (ms) SD (ms)
Overall 33.982 6.762 30565.040 298.482
Passing 23.487 6.762 249.961 18.605
Failing 2112.003 250.176 30565.040 3651.625
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Fig. 1. Density functions of passing response times in milliseconds for 35
and 40 users on a single node (ms)

experiment can be seen in Table V. We again saw an increase
in failures: from 426 to 1005 failed messages, while the failure
rate increased from 0.2% to 0.5%. While this is still a very
small value, the number of failures has more than doubled
when only adding 5 additional users. We again decided to
look at a breakdown of the response times of the failed and
passing computations, which can be seen in Table V.

Figure 1 shows the probability densities of passing response
times for both 35 and 40 users. Looking closely, we see very
similar response times. With 40 users, there seems to be a more
of a smaller, secondary clustering of response times between
50ms and 100ms, possibly showing a small secondary wave of
classifications. This could be a sign that incoming data streams
are getting clustered together, leading to computations being
processed in waves.

We saw a small increase in the percentage of failures
between 35 and 40 users, but also a drastic increase in the
amount of time it takes for these delayed messages to get
back to the sender; increasing from 9.5 seconds to 30 seconds.
Performing a closer analysis of these failed messages, it
becomes clear that they are occurring in waves: all clients
report overdue communications at approximately the same
time. In the 35 user case, these waves occur less often than
in the 40 user case. There is obviously some recurring event
causing messages to be overdue.

Analyzing resource usage on the machine, it becomes clear
that delayed messages occur when data needs to be shifted in
and out of swap space. The node is utilizing all 12GB RAM
maintaining the dedicated R instances, and has needed to start



storing data which is actively needed in swap.
Looking at only the percentage of failed messages, it seems

likely that we could theoretically support even more concurrent
users. In the case of BCI applications, however, timeliness is
a priority. For example, you would not want to be using a
system which may have a 30 second delay when using EEG
signals to drive a wheelchair. Being stuck in the middle of a
street for half a minute could be disastrous. Due to the drastic
difference in response times as swap needs to be utilized, we
decided to set a cap at 35 users on a single machine. Our
current bottleneck is memory usage, so in future work we can
look into ways to decrease the footprint of R.

C. Passive and Active Fault-Tolerance Schemes

For our initial experiments in fault-tolerance for EEG
streams, we first looked at the simplest possible case: 3
resources with 30 users hosted on each. While this is a bit
below the maximum support case we found for small clusters
(35 users), we are introducing extra communications in the
form of the heartbeat approach. Each resource was in its own
failure group (M = 3) a failure suspicion level (S) of 2, and a
transmission rate (T) of 2 seconds. Based on this information,
and the algorithms defined in section III, we can predict best,
worst and average case scenarios with respect to how long it
takes to recognize and recover from failures.

1) Full Passive Replication Experiments: In a fully pas-
sive approach, only the primary replica receives inputs and
generates outputs. The other replicas simply remain dormant
until failure of the primary has been detected. At that time,
inputs are redirected to a replica, and it becomes the primary
copy of the computation. While this approach has the lowest
cost to maintain with respect to resource usage, it also has
the highest cost with respect to the amount of time it takes to
recover. Once a passive replica detects failure of the primary, it
needs to initiate communications streams. For this experiment,
we implemented a resend message which allows the replica to
request a resend of the last data from the user. This allowed
us to measure the time it takes to recognize, recover, and start
processing new data after failures.

As we can see from Table VI, the passive replication
recovery rate is trending towards the theoretical worst case
scenario. In one instance, we are even exceeding this worst
case scenario. Our approach limits the potential for flagging
false positives (labeling that a failure has occurred when one
has not), at the cost of increasing the time to notice failure. In
a fully passive approach, new channels of communication need
to be set up in order to resume the processing of data, leading
to potential recovery times slightly above the theoretical worst
case scenario.

2) Full Active Replication Experiments: For this set of
experiments, we are setting all computations in the cluster
as active replicas. In our implementation, this means that all
replicas receive all inputs, but only the primary is responsible
for processing the data and generating a result to pass on to
the user. In short, we are pushing three times as much data
for inputs as we would in an unreplicated environment. With

TABLE VI
TIME TO RECOVER FROM FAILURE IN A SMALL CLUSTER WITH 30

CONCURRENT USERS (MS)

Mean (ms) Min (ms) Max (ms) SD (ms)
Active 14740.98 14609.79 14864.52 72.657
Passive 15898.75 15794.50 16023.19 67.414

Theoretical 14000 12000.00 16000.00 —

30 users, we would originally be generating data at a rate of
2.3MB/s, but since all replicas need to see all inputs, we are
instead generating data at a rate of 7MB/s.

In our initial experiments, we relied on the replicas saving
state from the previous inputs to recover from failures. This
should have resulted in an increased recovery time from
failure, since they do not need to request a resend. With this
approach, we actually found our recovery time to be far worse
than the worst case scenario of 16 seconds. By having all
replicas store the last EEG signal sent to it, the node was
forced to store computations in swap space, leading to much
larger overheads when a failure occurred. We switched to the
model we used in the passive replication approaches, where
a replica requests a resend of data from a client when it is
promoted to primary. As seen in Table VI, this new approach
leads to a recovery time right between the best and worst case
scenarios.

While this approach can offer the strongest fault-tolerance
guarantees, it also incurs the greatest overheads. In a live
system, a fully active replication approach is too naive, as
we begin to hinder our scaling capabilities.

V. FULL SCALE CLUSTER STRESS TESTS

Previously, we found our network to be an effective bot-
tleneck at 150 concurrent users. In section IV, we found that
memory started to became the bottleneck on a single node
without replication at 35 users. This section determines the
maximum number of concurrent users we can support as we
scale up the number of nodes in our cluster. Ideally, we should
be able to maintain the rate of 35 users per machine. As the
number of users increases, we increase the chances that the
network becomes a bottleneck as communications increase.

A. Changes in Approach

For these experiments, we needed to switch to a more
streamlined approach to generating EEG signals due to a lack
of system resources. Using a threaded approach, data is pushed
every 250ms regardless of whether or not a previous response
has been returned. When the delay is long enough, this can
lead to lost messages. In such situations, we are unable to
properly asses worst case scenarios.

B. Full Scale Stress Tests

As a baseline starting point we first look to the question of
supporting 1000 concurrent users. Due to the current cost of
amplifiers, this is far beyond the rate at which EEG signals
are typically gathered by a single lab. Supporting this many
concurrent users means that we can support multiple EEG
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labs and their user base on a single cluster. Amalgamating
this much data from disparate users could allow us to learn
much more about raw EEG data than ever before.

We spread these 1000 computations across 40 machines.
While this will undershoot our findings from the previous
section (25 users per machine instead of the 35 maximum we
found before), this allows us some leeway to take into account
any problems that may arise from a networking standpoint.

We found that we could support 1000 users with a minimal
failure rate (0.005%). A closer analysis of the data revealed
that our worst-case scenario involved a maximum delay of just
over 1 second. As we discussed in section IV, this length delay
is unlikely to be noticed by a user, so falls within an acceptable
limit. Looking at the probability density of passing responses
in Figure 2, we see that there is a significant shift in response
times from our tests with a single node. This makes it apparent
that we are starting to see a problem with communications
overheads as we scale up the size of our cluster.

The next step we took was to see if we could support the 35
users per machine we saw in the previous tests. We used the
same setup for this test: 40 resources, a dedicated broker, and
external machines to generate EEG streams. We distributed
1400 computations, so each resource hosted 35 computations.

In this test case, we saw a significant increase in the
number of failed classifications, reaching 0.8% failure rate.
This includes lost messages as well as messages received in
over 250ms. Looking at the 1400 user case in Figure 2, we
can see that there has been a drastic shift in the mean response
times. We are obviously hitting a communications threshold
as we scale up to a full cluster.

Even on a full scale cluster, our new approach can support
a much larger number of concurrent users than our initial
approach. We also found that we are hitting a communications
bottleneck as we increase the size of our cluster. The main
problem appears to be with the underlying communications

framework. One avenue of expansion is to develop a more
efficient method of content distribution.

C. Replication in a large Cluster

For the last set of experiments in this section, we decided
to analyze how our replication approach scales. We hosted
450 unique user computations. With a replication level of 3,
this means 1350 computations in total. We hosted this on a
cluster of 45 nodes, so each node hosted 30 computations.
It is important to remember at this point that while Java can
recognize the difference between a primary and a replica, R
cannot. Even passive replicas can take up a significant portion
of memory keeping their designated R instance alive.

With respect to our HeartBeat framework, we set up our
test environment to have 5 heartbeat groups each containing
9 machines. This leaves our best and worst case scenarios at
a 20 and 28 seconds respectively. While we could have used
only 3 message groups as in our small-scale experiments, this
would add to the probability of encountering communications
bottlenecks, leading to erroneous failure announcements.

In this experiment we utilize an 80/20 split of passive
and active replication schemes (360 passive and 90 active
computations) as a cluster containing only active replicas
causes too much stress on the underlying communications
framework to be feasible. The ability to support multiple
replication schemes in a single instance of a framework is
not common ([9], [16], [17], [18]), but a strength we have
built into the Granules framework.

In the context of BCI, it is clear that not all computations
are created equally. A computation performing classifications
for a BCI controlled wheelchair should have stronger failure
guarantees than a BCI speller. Granules’ ability to host various
replication approaches in a single cluster allows for much more
flexibility in deployments.

As in our previous stress tests we needed to use a modified
generator with a threaded approach. In the case of failures, we
can only see the number of missed messages. As messages are
sent every 250ms, every second spent detecting failure means
4 lost messages. This means in the best case scenario we will
lose 80, while in the worst case we could lose 112 messages.

In our tests we found that our passive and active approaches
both lost the same number of messages, right at the theoretical
average of 96 lost messages. This is most likely caused
by the lockstep nature of our generator approach. The cost
to set up communications in a passive approach only takes
tens of milliseconds to occur. Unless the timing is perfectly
aligned, the odds of missing one of the regular 250ms bursts
is relatively low.

VI. EEG SPECIFIC FAULT-TOLERANCE SCHEMES

While our HeartBeat scheme does allow us to accurately
determine whether or not a machine has failed, the cost of
this approach is readily apparent in the amount of time needed
to recover from a failure. The purpose of this section is to
explore several different approaches to help reduce the amount
of time a client is left without any new classifications. A key



to these approaches is the ability of the client to raise an
alert if they are having problems contacting their computation.
Giving users the power to determine failure suspicion opens
up several complex fault-tolerance schemes, allows for basic
load-balancing techniques, and even opens up the possibility
of detecting a new class of failures.

A. Multi-User Classifiers

Our current approach involves each user training up an
individualized group of experts in their own R instance.
Previously, we looked at a much more generalized approach
where all users shared a single group of experts. While the
accuracy of a generic group of experts will be lower than an
individually trained group of experts, it should be better than
leaving the user without any classifications.

This approach involves starting a single, unreplicated
generic classifier on every machine in the cluster. The generic
classifiers would be tuned to listen for computations which
do not have any replicas hosted on the same node, as that
would provide no additional support. While evaluating various
approaches to host groups of experts for BCI applications, we
considered using generic classifiers to host multiple users. Our
experiments showed that we could potentially support up to
40 users within a single generic classifier.

When a user has begun to miss classifications, they can
begin to simultaneously transmit data to a generic classifier.
This way a user will not be left without any classifications
while waiting for the failure of a node to be confirmed with
the HeartBeat approach.

B. Dual Processing of Inputs

In stream processing systems some research has gone into
exploring how replicas can reduce latency [19], this approach
could also be adapted to our process of classifying EEG
signals. This is a resource-intensive approach where multiple
replicas receive, process, and generate outputs. Clients are
required to keep track of sent messages, so they can determine
whether they are receiving a straggler classification or a new
classification.

Overall, this is a simple fix with a high return – a user
never even notices when a replica has failed as they continue
to receive classifications from the other replicas. This would be
an ideal strategy for a BCI such as the wheelchair where even
small outages may result in disastrous consequences. Whether
or not this outweighs the extra cost in resource usage can
be a more difficult question to answer. Using our replication
strategy of hosting 3 replicas, this would lead to lowering a
clusters capacity to 1/3 of what it could otherwise potentially
host.

One possible solution to this resource usage is to use a
hybrid approach: 2 replicas are concurrently processing inputs
and returning results, while the third exists solely as a passive
replica. Should one of the active replicas fail, the passive one
would then be promoted to an active role. All this could occur
without the user even noticing that a failure has occurred.

A big problem in this approach is the slim but not non-
existent possibility that a second failure could occur causing
the user to lose both active replicas before the passive replica
can be instantiated. This problem can be solved by the addition
of the generic classifier approach introduced above.

While waiting for the passive replica to acknowledge the
failure and be promoted to active status, the user can make
use of a generic classifier (possibly giving preference to results
returned from the remaining active replica). Should both active
replicas fail before the passive replica can be promoted, the
user would be able to rely entirely upon the generic classifier
– ensuring some processing of EEG data is occurring.

C. Toggling Replicas

An alternative approach is to give users even more control
over their replicas by revealing computation hosting options.
Instead of staying with a single replica until failure, users
switch between replicas periodically. Based on performance
and user requirements, the user can choose which replica to
send the bulk of their data for processing. This approach has
several advantages:

• Load Balancing – over time, users will settle down to
primarily use replicas residing on nodes with the lowest
loads. This will allow the system to keep itself load
balanced over time.

• Meeting User Needs – based on BCI application, users
may have very different requirements. Some may priori-
tize lower latency, while others need to limit variations in
response times. Users can make informed decisions about
which replica to rely on based on previous behavior.

• Reduced Overheads – this approach uses less resources
than the dual processing approach, yet should still allow a
user to detect failure more quickly than a naive approach.

• Increased Knowledge Dispersal – as users are regularly
switching between replicas, different nodes in the cluster
will be acting as primary over time. This means that
different generic trainers will have access to new training
data from this user over time. Each node in the cluster
will obtain broader access to training data, potentially
increasing the capabilities of the models developed by
the generic trainers.

This approach does, however, require a lot of processing and
memory usage on the client side. An approach this complex
may not be a good choice for a mobile device such as a
smartphone with limited resources to begin with. This ap-
proach should only be implemented after careful consideration
of various parameters. Should the toggle function be timed
incorrectly, there is a chance that the system will never reach
a stable state if all users sync up unfortunately.

D. Determining Computation Level Failures

The HeartBeat system has been designed to detect failures
at a machine level. It is tuned to avoid false positives, and so
it tends to err on the side of caution taking seconds to ensure
a failure has actually occurred. While we have been focusing



on the task of detecting failure more quickly, we have been
avoiding the more difficult to detect computation level failure.

This is a failure which does not effect other computations
on the machine (such as the HeartBeat computation), meaning
it can never be detected by anyone other than the single user
connected to that instance. By allowing a user to independently
switch to a different replica when responses fall below an
acceptable threshold, we solve the problem of partial failures.

VII. RELATED WORK

Replication schemes have been explored in distributed
streaming databases, such as Borealis [20] and Aurora [17].
MapReduce frameworks such as Hadoop also implement
replication. In distributed systems, replicas may also used
to allow concurrent access. For example a user may have a
working copy of a document on a mobile device which is
often disconnected from the network, while a replica of the
document remains on a server for other users to access [19].

In this work, we focus on replication as a means to achieve
fault-tolerance. Every replicated process has replicas located
in different failure independent zones to ensure that at least
one replica survives even catastrophic failure.

MapReduce [16], Hadoop [9], and Dryad [18] all support
fault-tolerance through active replication. Once a node has
failed all processes it was hosting are restarted on a new node.
This process is orchestrated by a master node responsible for
scheduling all computations. When a process is restarted, it
starts at the beginning with the original inputs. While our
approach uses slightly more resources by instantiating passive
replicas, this is mitigated by a shorter fail-over time - no new
processes need to be ramped up. Reducing failover time is very
important when dealing with streaming inputs, particularly
bursty inputs where data is not entering the system at a
consistent rate.

Replication may also be leveraged for correctness [21] in a
scheme where a central node awaits outputs from all replicas
to decide on a consensus result of a computation. This reduces
the impact of malicious or erroneous results, and is a good way
to handle computing in an untrusted environment.

Databases typically make use of replication to allow quick
recovery in the case of failure conditions. There are two main
approaches to replication updates: Eager: all nodes need to
apply an update before it is considered completed, or Lazy:
only the primary applies the update before reporting success.
These approaches can be loosely classified as active and
passive approaches, respectively [22]

Classifying different mental tasks is a common approach
for BCI applications [3], [23]. There have been several studies
[24] to determine appropriate mental tasks. In this work we
develop ANNs that determine which task a user is most likely
performing. Other work attempts to simulate EEG data for
each task and then compare these simulations to actual data
to determine which task a user is currently performing [25].

Other approaches for BCI include identifying Event Related
Potentials (ERPs) such as the P300 [1]. A P300 is a very strong
signal which can be seen in an EEG recording that occurs

roughly 300ms after an uncommon target stimulus has been
seen. This approach is often used in spellers, where random
letters are flashed as the user attempts to spell a word.

Error-related potentials (ErrP) have been found to be ben-
eficial to BCI applications as well [26]. These occur about
250 ms after the ‘wrong’ action has occurred. For example, a
BCI user may attempt to move a cursor from one side of the
screen to the other. If an incorrect classification is chosen by
the BCI system (e.g. the cursor moves left instead of right), an
ErrP can be detected in the users EEG. Utilizing this signal,
it is possible to allow a user to give real-time feedback on the
accuracy of an underlying classifier.

VIII. CONCLUSIONS AND FUTURE WORK

Our experiments represent the first time that real-time
EEG classifications have been performed for such a large
number of concurrent users. In this work, we have presented a
scalable approach to EEG analysis for BCI applications. This
approach allows for the aggregation of massive amounts of
EEG data, opening the way for new analyses. Furthermore, we
do so without limiting the ability for users to customize their
classifiers to obtain greater accuracy on demand. We managed
to obtain throughput rate of 1TB every 4 hours.

In distributed systems, failures are common. When working
with health sensor data, it is important to be able to detect and
recover from failure in a timely manner. Here we developed
a failure detection scheme with low false positive rates. We
have designed approaches to failure detection and recovery
that allow the user to play an active role in failure detection.
Allowing users to enter a failure suspicion mode makes it
possible to take action to mitigate possible failures before
the system can reliably determine that a failure has occurred.
This allows us to detect single computation failures where
most computations on the node are still functioning. Such
failures may go undetected on a system which only determines
complete node failures.

Our small scale results showed a bottleneck due to the mem-
ory requirements of R. One avenue of future work involves
trying to reduce this footprint.

Alternatively, we plan to use a different backend language
for EEG classification. Python’s NumPy library [27] offers
comparable classification overheads, and has reduced commu-
nications overheads with Granules Bridges [13].

As we moved to larger scale experiments, we found that our
stream routing substrate was having problems supporting our
computations. In the future, we plan to examine this backend
to find ways to avoid this bottleneck.
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