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Abstract— Brain Computer Interfaces (BCIs) allow users to 
interact with a computer via electroencephalogram (EEG) signals 
generated by their brain. The BCI application that we consider 
allows a user to initiate actions such as keyboard input or control 
the motion of their wheelchair. Our goal is to be able to train the 
neural network and classify the EEG signals from multiple users 
to infer their intended actions in a distributed environment. The 
processing is developed using the Map-Reduce framework. We 
use our cloud runtime, Granules, to classify these EEG streams. 
One of our objectives is to be able to process these EEG streams 
in real-time. The BCI software has been developed in R, which is 
an interpreted language designed for the fast computation of 
matrix multiplications, making it an effective language for the 
development of artificial neural networks. We contrast our 
approach of using Granules with a competing approach that uses 
an R package – Snowfall that simplifies execution of R 
computations in a distributed setting. We have performed 
experiments to evaluate the costs introduced by our scheme for 
training the neural networks and classifying the EEG signals. 
Our results demonstrate the suitability of using Granules to 
classify multiple EEG streams in a distributed environment. 

Keywords Brain Computer Interfaces, Cloud computing, R, 
Granules, MapReduce, EEG, Artificial Neural Networks 

I.  INTRODUCTION 
Brain Computer Interfaces (BCIs) allow users to interact 

with a computer via electroencephalogram (EEG) signals. The 
BCI application that we consider in this paper allows users 
who have lost voluntary motion control to initiate actions 
ranging from controlling a wheelchair [1] to interacting with 
keyboard interfaces based on their thoughts. EEG signals 
gathered using electrodes placed on the user’s scalp are 
analyzed using a neural network to reason about the actions 
initiated by the user. Our focus here is to investigate the 
possibility of performing such analysis using our cloud 
runtime, Granules. 

Granules [2, 3] is a lightweight runtime for cloud 
computing and is designed to orchestrate a large number of 
computations on a cloud. The runtime is designed to support 
processing of data produced by sensors. Granules supports two 
of the most dominant models for cloud computing MapReduce 
[4] and dataflow graphs [5]. In Granules individual 
computations have a finite state machine associated with them. 
Computations change state depending on the availability of 
data on any of their input datasets or as a result of external 

triggers. When the processing is complete, computations 
become dormant awaiting data on any of their input datasets. 

In Granules, computations specify a scheduling strategy, 
which in turn govern their lifetimes. Computations specify 
their scheduling strategy along three dimensions: counts, data 
driven and periodicity. The counts axis specifies limits on the 
number of times a computation task will executed. The data 
driven axis specifies that a computation task needs to be 
scheduled for execution whenever data is available on any one 
of its constituent datasets, which could be either streams or 
files. The periodicity axis specifies that computations should 
be scheduled for execution at predefined intervals. One can 
also specify a custom scheduling strategy that is a combination 
along these three dimensions; for example, limit a 
computation to be executed 500 times either when data is 
available or at regular intervals. A computation can change its 
scheduling strategy during execution, and Granules enforces 
the newly established scheduling strategy during the next 
round of execution. 

Computations in Granules build state over successive 
rounds of execution. Though the typical CPU burst time for 
computations during a given execution is short (seconds to a 
few minutes), these computations can be long-running with 
computations toggling between active and dormant states. 

There are two benefits to analyzing EEG signals using 
Granules. Since Granules can interleave streams, and the 
concomitant processing, from multiple users on a single 
machine there is a potential for reducing costs; in the current 
BCI implementations, there is a dedicated processing unit per 
user. Since Granules orchestrates computations on the set of 
available machines, even a mid-sized cluster can support a 
fairly large number of users. This leads us to a second benefit: 
EEG data from a large number of users can improve the 
training of the neural networks, which could then be used to 
improve the accuracy of the inference algorithms.  

A. Research Challenges 
There are three research challenges that we need to address. 
1. Can we process these EEG streams in real-time? The 

scheduling overheads introduced by Granules should not 
preclude real-time processing.  

2. Can we interleave processing of EEG streams from 
multiple users on the same machine? Setting aside one 
machine per user would be inefficient and restrictive.  
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3. Can we scale up to a sufficiently large number of users on 
a set of available machines? We should be able to 
accommodate a greater number of users as more machines 
become available. 

B. Paper Contributions 
Our contributions are broadly in the area of BCI and cloud 
computing. The BCI contributions stem from the fact, to the 
best of our knowledge, this is one of the first attempts to 
classify EEG streams from multiple users in realtime in a 
cluster setting. Cloud computing contributions stem from the 
fact that this is the first time that the MapReduce programming 
model has been used to classify such EEG streams.  

C. Paper Organization 
The remainder of this paper is organized as follows:  In section 
II we describe our BCI application. In section III we describe 
how we train the neural network and classify EEG signals 
using Granules. We describe an alternative scheme using an R 
package, Snowfall for performing the distributed analysis. The 
experimental setup for our experiments is described in section 
IV, with the results presented in section VI. We present our 
conclusions and future directions in section VIII. 

II. OUR BCI APPLICATION 
The BCI application we consider allow users who have lost 

voluntary motor control to interact with a computer using 
electroencephalograms (EEG). Users are fitted with an EEG 
cap, which holds a number of electrodes close to the users 
scalp.  These electrodes pick up electrical impulses from the 
brain.  Since these are non-invasive, only surface charges are 
picked up.  These can be noisy, so correctly interpreting a 
user’s intention can be difficult. 

In general, users are given several tasks which involve 
different areas of the brain.  For example, a visual or spatial 
problem should involve high activity (or strong electrical 
pulses) from the occipital lobe in the back of the head. 
Imagined movement, on the other hand, involves activity in 
the opposite hemisphere of the brain (left leg movement can 
be seen in the right hemisphere of the brain), as well as some 
frontal lobe activity.  Tasks are selected to keep user fatigue to 
a minimum, users will generally find some tasks simpler than 
others, as well as attempting to keep EEG activity spatially 
separate. Having tasks spread out in different areas of the 
brain helps classifiers discriminate between different tasks, 
increasing accuracy.  The tasks used in our application are: 
imagined left leg movement – which should be primarily seen 
in the right hemisphere, imagined right hand movement – 
primarily in the left hemisphere, a mathematical task – the 
frontal lobe, and 3D image manipulation – the occipital lobe.  
These tasks were chosen primarily for their distinct EEG 
patterns. 

In the simplest case, a BCI application would ask a user to 
perform two separate tasks: one for confirmation, one for 
negation. While this is a fully-functioning interface, it can be 
quite tedious for more complex interactions, such as 
navigating a crowded hallway with a wheelchair.  In these 
cases, more tasks are required of the user.  In our BCI 
application, we are using data generated for a typing 
application.  The application allows the user to select the next 

letter to type by subdividing the alphabet into quarters, and 
then further subdividing each selection until the user selects a 
single letter.  While this is the original application our datasets 
were generated for, it is possible to take our generic backend 
and apply it to any application, which has been designed to 
handle four user tasks as inputs. 

For this work, we are using an artificial neural network with 
Logistic Regression for classification tasks.  Artificial neural 
networks, usually referred to as neural networks, are inspired 
by the interconnection of neurons in the brain.  A basic neural 
network involves an input layer, a hidden layer, and an output 
layer.  A very high-level overview can be seen in Figure 1.   
While the number of units in the input layer needs to match the 
dimensionality of the inputs, and the units in the output layer 
needs to match the dimensionality of the expected output, there 
can be any number of hidden units in the hidden layer.  A 
general rule of thumb is that a larger number of hidden units 
can yield better results, but takes longer to train. 

The hidden units are what drive a neural network.  A neural 
network learns by modifying the parameters in this layer as 
well as the output layer.  While larger numbers of hidden units 
can lead to a better trained network, it can also lead to over-
specialization.  A neural network may become too specialized 
to the training data, and cannot generalize well enough to 
handle new inputs. 

In our implementation, the hidden units start with a very 
small, randomized weight which is applied to each input.  
Through the training process, these weights are modified to 
produce output closer to what is expected. 

 
Figure 1.  Simple Artificial Neural Network with one hidden layer, 

containing 4 hidden units 
We are currently using an offline training method to train 

our neural networks.  In offline training, we have a set of stored 
data consisting of sets inputs and their expected output.  The 
neural network is trained by sending it input/output pairs, and 
finding the best set of weights for the hidden layer to minimize 
the error between actual and expected output.  

The algorithms for training these neural networks and 
classifying EEG packets have been implemented in R. R is an 
interpreted language specialized for fast computation of matrix 
multiplications [6].  This makes it an ideal language for several 
types of computations, ranging from financial market analysis 
[7] to Bioinformatics applications [8], to Brain Computer 
Interfaces [1]. As an interpreted language, R allows for quick 
prototyping and testing.  While interpreted languages are 
inherently not as fast as compiled code written in C or C++, R 
makes heavy use of C libraries in order to achieve fast matrix 
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calculations – making it a better choice for computation-heavy 
applications, unlike other interpreted languages, such as 
Python. 

III. CLASSIFYING EEG SAMPLES USING GRANULES 
The EEG processing algorithms have been developed in a 

language (R) that is different from the runtime’s native 
language (java). Rather than re-implement these algorithms in 
Java, we decided to incorporate support for R computations in 
our runtime. Here, a challenge is to ensure that overheads 
introduced by bridging to R are acceptable. Since computations 
in Granules are activated when data is available on any of the 
input streams, an added consideration for the bridging scheme 
is to ensure that the activation overheads are acceptable.  

To handle communication between Java and R, our 
Granules implementation uses the Java R Interface (JRI) 
package [9]. This interface allows an R session to be started 
and used through Java. With this, a Granules resource is able to 
start up an R session and train and classify through this 
session.  This means that each resource can keep generated data 
(such as the trained neural networks) inside the R session, 
meaning less data needs to be passed across the network, as 
well as between Java and R. 

The Granules-JRI bridge is lightweight, and does not 
maintain data structures that take up memory. Computation 
state is maintained within the Java and R computations, but not 
the bridge. Communications across this bridge are compact 
execution statements.  This means that the minimal amount of 
data is contained in any message sent across the bridge.  
Instead of sending multiple commands through the Granules-
JRI Bridge, we will start a complex command which will in 
turn perform the necessary series of operations. 

The Granules runtime is started up on any machine that is 
expected to execute computations. The distribution of these 
computations is load balanced over the set of available 
machines. In our implementation, the processing is set up as a 
Map-Reduce [4] computation. Computations, both mappers 
and reducers, specify a scheduling strategy that activates them 
when data is available on any one of their input streams. 
Mappers produce their outputs as streams, and the reducer is 
configured to register an interest in outputs produced by 
individual mappers. The mappers are responsible for training 
and retaining a neural network. The first job of a mapper is to 
set up its bridge to R.  Once the bridge has been set up, the 
mapper can train its neural network, and is then ready to handle 
incoming requests for classification by users. The mappers pass 
along any predictions to the reducer, which then makes a final 
prediction based on the results from all the mappers and sends 
the results back to the user.  A high level overview of this 
process can be seen in Figure 2.  

While there may be many mappers, there is only a single 
reducer.  In Granules, computations can specify the data 
streams that they are interested in, and here each mapper has 
been subscribed to listen for EEG streams.  Mappers are not 
attached to any single user, allowing a single Granules cloud to 
simultaneously handle streaming EEG data from multiple 
users.  EEG data is streamed from a user, and read by each 
mapper.  This data is not just a stream from a single electrode, 
but a combined stream of signals from all electrodes attached to 
the user.  The combined EEG stream is analyzed by the neural 
network stored in the mapper.  The neural network has been 

trained on data of the same dimensionality (the same number of 
electrode streams), and takes the full stream as input.  Through 
the training process, the neural network has modified the 
weights, or importance of each separate stream, and developed 
a process for determining which type of signal the user is 
specifically trying to produce.  The neural network uses this 
process to decide on the most likely classification based off of 
the current input, and will send this on as its prediction.  The 
types of signals are predetermined, and cannot be modified 
once a neural network has been trained.  Depending on the type 
of BCI application that the neural network is being trained to 
support, the network will be trained to recognize 2 or more 
specific signal patterns. 

 
Figure 2.  High level overview of Granules implementation 

After a mapper has finished analyzing the stream, it will 
send a classification to the reducer.  The reducer is responsible 
for gathering these classifications from all mappers, and 
determines the consensus classification by finding which 
classification was most often predicted by the mappers.  Once 
the reducer has found a final classification, it then returns to the 
user the consensus classification.  In the future, we wish to 
explore the benefits of training a neural network in the reducer.  
This would allow the reducer to learn which mappers gave 
better predictions, and learn to weight the classifications 
appropriately. 

Our approach of multiple mappers and a single reducer 
allows us to cut short the training time for the neural networks, 
and still gain accuracy through a consensus.  Any single neural 
network in this approach has not been trained exhaustively, so 
has a lower accuracy than a more thoroughly trained network.  
By allowing each mapper to independently train and keep a 
neural network, we can create a large number of these partially 
trained networks.  Each network will learn a slightly different 
thing, meaning that together these networks can perform as 
well, if not better, than a single well-trained network. 

Computations in Granules are capable of retaining state 
across successive executions, so the neural networks can be 
stored with each mapper and do not need to be retransmitted 
for testing new inputs.  This cuts down on the amount of data 
that needs to be streamed across the cloud, and means that a 
larger neural network in the Granules environment would only 
add computation time on training, not on subsequent test runs. 

IV. USING SNOWFALL 
Snowfall [10] is an R package based on the Snow [11] 

package. Snow was one of the first R packages to allow 
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programmers to distribute R code through a cloud without 
requiring a strong background in high performance computing. 
Snowfall builds on Snow and offers an easier interface, as well 
as efficient built-in load balancing. In our experiments, all calls 
with Snowfall are load-balanced, so if one node finishes 
computations before another slower machine, it will start 
running the other job as well, in order to finish in the most 
efficient manner possible. 

Snowfall is designed so that programmers do not need to 
modify existing sequential code in order to distribute an 
application across a cloud.  It operates along the same principle 
as the MapReduce paradigm – a computation and data are sent 
to different nodes, each node is responsible for performing the 
computation on the data sent to it, and all results are then 
returned to the source which distributed the computation. 

 
Figure 3.  High level overview of Snowfall implementation 

With Snowfall, a cluster is created from a list of potential 
resources (machines).  Each resource listed is then checked for 
current load, and is added to the cluster if the load is light 
enough. After a cluster is established, it can be used for 
processing.  Maintaining variables for later processing across 
cluster   nodes is difficult, and can result in undefined results, 
particularly when a load-balanced approach is used.  Because 
of this, subsequent testing of data with a trained neural network 
requires the trained neural network to be sent to cluster nodes 
along with the data to be processed. 

A high level overview of the Snowfall implementation is 
shown in Figure 3.  A source running R sets up a Snowfall 
cloud, with a specified set of nodes.  The source then sends all 
data needed for the computation to each node, and each node 
then returns the results to the source. 

As the purpose of this research is to evaluate streaming 
capabilities, as opposed to evaluating classification methods, 
we will not be checking classifications for accuracy.  We 
instead focus on the amount of time off-line training takes as 
well as the time it takes to classify streaming data. 

V. EXPERIMENTAL SETUP  
The machines (8-core Xeon, 16GB RAM) involved in the 

experiments were hosted on a 100 Mbps LAN. We used 
version 1.6.0_18 of the Java Virtual Machine, version 2.11.1 of 
R, and version 1.61 of Snowfall in our benchmarks. 

In our experiments, both Snowfall and Granules contain the 
same R code to create, train, and use neural networks.  Each, 
however, has a slightly different distributed backend.  
Additionally, each has a slightly different method of obtaining 
the pseudo-streamed data for classification, since Snowfall is 
not designed to handle streaming data.  We first use an R script 
to read in EEG data from files, and pass this data to distributed 

environment for classification.  This same script is used in both 
the Granules and Snowfall approach, though in Granules the 
data is then streamed to awaiting resources, while the Snowfall 
version simply pushes the data to the cluster. 

A major difference between the Snowfall and Granules 
training approaches is where the initial training data is loaded.  
Snowfall reads in all the training data, and stores it as a local 
variable.  This variable is then passed to all nodes in the 
network for training, using the function sfExport().  In the 
Granules version, each resource needs direct access to the 
training data, and is responsible for reading the data from file 
independently. 

A. Experimental Data 
The actual placement of electrodes followed the 

international 10-20 system of electrode placement, and is 
depicted in Figure 4. For these experiments, 19 channels were 
used: FP1, FP2, F3, Fz, F4, F7, F8, C3, Cz, C4, T3, T5, T4, T6, 
P3, Pz, P4, O1, and O2 from a Mindset EEG amplifier by 
Neuropulse-Systems (http://www.np-systems.com) with a 
sample rate of 256 Hz. The data was preprocessed before 
analysis – eye blinks and jaw clenches were filtered from the 
data, and the input has been further scrubbed by normalizing 
the data.  This level of preprocessing is typical of datasets used 
for BCI applications. 

 

The International 10-20 
System of Electrode 
Placement: 
F - Frontal lobe 
T - Temporal lobe 
C - Central lobe 
P - Parietal lobe 
O - Occipital lobe 
 
 
 
"Z" refers to an electrode 
placed on the mid-line. 

Figure 4.  The International 10-20 System of Electrode Placement 
For classification purposes, four different tasks were 

attempted: imagined right hand movement, imagined left leg 
movement, counting backwards from 100 by 3, and imagining 
a spinning computer.  These tasks involve increased activity in 
different areas of the brain, making them good candidate 
activities for analysis. Having four different tasks to classify 
allows a user to differentiate between four different options 
when using a BCI application.  These options could include 
choosing the next letter to type, or the direction to move a 
wheelchair. All movements were imagined in order to keep 
with the premise of a primary user being unable to voluntarily 
control muscle movements. It is also possible that actual 
movements may introduce noise into any gathered data. 

We trained the neural networks to classify various intervals 
of EEG data as one of these four tasks.  The training sets are 
made up of 10 five-second sequences of each task. This data 
was gathered from a single user familiar with the tasks.   Since 
the user who generated the data was familiar with the tasks, the 
data is clearer than an untrained user. 
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B. Initializing the Networks 
Both the Granules and Snowfall based versions go through 

an initial training of neural networks.  In the Snowfall 
implementation, a sequence of neural networks is returned - 
one for each resource trained.  In the Granules version, each 
computation starts its own R session, and trained networks are 
held in session memory.  For Granules, incoming data is first 
read in by a generator and then streamed to each resource for 
processing.  This approach simulates real-time streaming which 
we may be able to expect from a person wearing an EEG 
cap.  In the Snowfall version, Snowfall executes a 
LoadBalanced evaluation, where each resource receives a 
neural network and the set of data to be classified.  Should one 
resource be running slower than others, the data originally sent 
to the slower machine can be resent to a faster machine to help 
cut down on overall execution time. 

Each neural network is designed to use logistic regression 
for classification, contains 10 hidden units, and goes through a 
maximum of 400 iterations of scaled conjugate gradient 
descent [12] during the training process to optimize network 
weights, attempting to achieve a mean square root error 
(MSRE) of 0.  The hidden units are randomly initialized with 
very small weights.  This random weight initialization ensures 
that each network trained is slightly different from the others.  
This diversity is then used to help procure a joint classification 
based on the predictions of several small networks. 

It is theoretically possible that the neural network will 
converge on a solution in less than 400 iterations, but due to the 
scale of the data being classified and the small number of 
hidden units it is highly unlikely that this will ever 
happen.  During our tests, this situation never occurred, and the 
maximum number of iterations was always used. 

The current implementation uses an offline method for 
training the artificial neural networks.  All data used to train is 
on file, and the neural network is frozen once it finishes 
training – it does not continue to learn as data is classified.  An 
area for future research is to explore the feasibility of on-line 
training, which would allow a neural network to continue 
learning as it is functioning.  This approach would be able to 
fully leverage the benefits of multiple simultaneous users in 
real-time. After training has been completed, we use a reserved 
training set to test classification times. 

To simulate streaming EEG signals in a way which both 
Granules and Snowfall can handle, we developed an R script to 
read a 5 second stream from file, split it if necessary, and send 
it out to be classified.  With Granules, data is read in, and sent 
across the network to all resources.  In the Snowfall version, 
data is read in from file – using the same R script as the 
Granules version – and is then dispatched by Snowfall to each 
node in the cluster along with a neural network to use for 
classification.  In the Granules version, all classifications are 
then passed on to a node which then assesses the joint 
prediction and returns that result to the user.  Snowfall returns a 
set of predictions, which are then passed into an R function on 
the local machine.  This local function then returns the joint 
prediction. 

C. Data Processing 
For both training and test data sets, a lag of 3 frames is 

introduced into the data. This allows the artificial neural 
networks to see the previous 3 frames of the 19 channels of 

data, as well as the current incoming 19 channels.  This 
approach gives the neural network more data to work with for 
every frame to be classified, and can improve accuracy.  For 
these experiments, we kept the 3 frame lag constant but it is 
possible to vary this; however, once a network has been trained 
to use a particular lag, it will need to be retrained if a different 
lag is desired. The lag processing is handled by an R script 
which generates a pseudo-stream.  We have included this 
processing in all of our timing, as we would be doing these 
computations on the fly in a live situation, as data was read in 
from the EEG cap.  

VI. PERFORMANCE MEASUREMENTS 
To fully grasp any lags inflicted by using Granules and JRI, 

we developed several tests.  These tests are designed to bring to 
light any overheads incurred as the amount of nodes tested 
increases, as well as the amount of training data increases.  For 
each test, we looked at both the original training cost, as well as 
the amount of time it took to get a full response from every 
node when various lengths of EEG data is streamed for testing. 
A Granules resource is configured with a set of worker threads. 
There are two components to the scheduling overheads 
introduced by Granules: activation and queuing delays. 
Activation delay is the time that elapses between the receipt of 
data over a stream, and the time that it takes to activate a 
dormant computation’s finite state machine and have it ready 
for execution: this is typically in the order of 700-800 
microseconds. Even though computations are activated, if the 
configured worker threads are busy the activated computations 
are queued till such time that a worker thread is available: 
queuing delays depend on the size of the queue when the 
computation was added and the average processing time per 
computation. 

A. Baseline Tests 
Before launching into the full suite of tests designed for 

assessing cloud applications, we first performed baseline tests.  
To get baseline values, we first ran a simple series of tests on a 
single machine, with a single training set.  These tests use the 
base R code that is called in both our Snowfall and Granules 
implementations. 

With these baseline tests, we should be able to isolate 
communication costs incurred in the move to a distributed 
setting, as well as find any idiosyncratic behavior in R.  We 
looked at several measures, both directly reflected in the 
distributed tests – such as testing input streams – and indirect 
costs, such as loading training data.   The baseline tests gather 
timing data for the following actions: loading a single training 
set, using the gathered data to train a neural network, and then 
classifying five seconds, one second, and 250ms of streamed 
data.  Not only will this give us a baseline for each computation 
we will test later on in the distributed environments, but it also 
shows the basic cost of loading training files in R.  This is a 
time inherent in all further tests, and also limits the capabilities 
of our current off-line training approach. 

The results from these tests are shown in TABLE I.  
through TABLE III.   For R to load and convert a 2MB EEG 
file, we have a constant overhead of roughly 6.5 seconds.  
While this is acceptable for our current training sets (we are 
using a maximum of 4, about 8MB on disk, which takes around 
half a minute to fully load), this could potentially be a 
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bottleneck for future work, when we hope to leverage a cloud 
setting in order to amass training data from multiple users.  
These 2MB files contain 10 sets of 4 activities for 5 seconds 
apiece – about 200 seconds of EEG data.  The baseline times to 
load a single dataset can be seen in TABLE I.  

TABLE I.  BASELINE TIME TO LOAD A SINGLE TRAINING DATASET (~ 
2MB) IN MILLISECONDS 

Mean (ms) Min (ms) Max (ms) SD (ms) 
6581.602 6439.742 6822.34 101.3716 

We then looked at the amount of time it took to train a 
single neural network with one training set. Our results are 
shown below in TABLE II. . While this will be directly 
effected by the training set size, we should still be able to get 
an accurate read of this relationship in our subsequent runs.  In 
this stand-alone case, it regularly takes over three minutes to 
train a single network.  When this is done in a distributed 
setting, the training occurs in parallel, so we only see the 
amount of time for a single network to be trained even in an 
environment which has multiple networks. 

TABLE II.  BASELINE TIME TO TRAIN A NEURAL NETWORK FROM ONE 
TRAINING SET IN MILLISECONDS 

Mean (ms) Min (ms) Max (ms) SD (ms) 
194463.7 192433.3 197094.9 1300.87 

The last tests we ran as a baseline determined the base cost 
for classifying streaming data.  The feasibility of using R as a 
real-time backend to BCI applications in a distributed 
environment hinges on these results.  If, for example, it takes 
more than one second to classify one second of EEG data, it 
would be impossible to make the system function in real-time.  
For these tests, we looked at five seconds of data (the size from 
our training sets), one second, and 250 milliseconds of EEG 
data.  The results of our experiments can be seen in TABLE III.   
From these results, we can see that an R backend to EEG 
classification is clearly possible – for every stream time tested, 
the processing time is less than 1% of the stream time.  

TABLE III.  BASELINE CLASSIFICATION TIMES FOR A SINGLE NEURAL 
NETWORK IN MILLISECONDS 

Stream 
Time 

Mean (ms) Min (ms) Max (ms) SD (ms) 

5s 23.0432 22.17889 23.56791 0.4734237 
1s 5.28194 4.909039 11.16085 0.8568976 
250ms 1.710529 1.673937 1.926184 0.03777157 

B. Training Overhead 
1) One Resource, One Training Set 

For this test, a single resource was used, as well as a single 
training set (one set of 10 five-second sequences of each task).  
This is roughly 2MB on disk.  This test is designed to get a 
baseline for the amount of time it takes to stream to a single 
resource using the smallest subset of our training data.  As can 
be seen below in  

TABLE IV.  TRAINING A SINGLE NEURAL NETWORK IN A DISTRIBUTED 
SETTING WITH ONE TRAINING SET IN MILLISECONDS 

Method Mean (ms) Min (ms) Max (ms) SD (ms) 
Snowfall 409860.5 403364.3 419965.7 4216.875 
Granules 313304.2 306402 329149 5141.031 
2) Multiple Resources, One Training Set 

This test is designed to bring to light any network latencies 
incurred by either approach.  As the number of resources 

needing to be streamed to increases, we want to see if there is a 
noticeable difference in the time it takes to spread data across 
the network.  For this experiment, we used three resources, and 
a single training set.  Again, the training data is approximately 
2MB on disk. 

TABLE V.  TRAINING 3 NEURAL NETWORKS IN A DISTRIBUTED SETTING 
WITH ONE TRAINING SET IN MILLISECONDS 

Method Mean 
(ms) 

Min (ms) Max (ms) SD (ms) 

Snowfall 462626.2 401475.9 483235.9 23512.64 
Granules 675968.8 610550 772679 52823.21 

3) One Resource, Multiple Training Sets 
In this test we look at the cost of streaming data across the 

network, particularly in the case of initialization.  For this test 
we used four sets of 10 five-second sequences of the four tasks.  
These datasets total to just about 8MB on disk. 

TABLE VI.  TRAINING A SINGLE NEURAL NETWORK IN A DISTRIBUTED 
SETTING WITH 4 TRAINING SETS IN MILLISECONDS 

Method Mean (ms) Min (ms) Max (ms) SD (ms) 
Snowfall 1001631 971224 1020680 17743.27 
Granules 1933540 1782531 2057664 110686.7 
4) Multiple Resources, Multiple Training Sets 

This test explores the cost of sending multiple training sets 
to multiple resources, as well as any network lag from 
receiving results from each of the resources.  We do not expect 
to see a noticeable difference between these results and when 
we looked at multiple resources and a single training set, but 
there is a possibility that the larger training set exacerbates any 
network lag from communicating with multiple resources.   
Again, the training sets are 8MB on disk. 

TABLE VII.  TRAINING 3 NEURAL NETWORKS IN A CLOUD WITH 4 
TRAINING SETS IN MILLISECONDS 

Method Mean (ms) Min (ms) Max (ms) SD (ms) 
Snowfall 988410.4 964499 1023549 17513.37 
Granules 1964255 1779853 2131574 136452.1 

From these results, we see that Snowfall outperforms 
Granules in the initialization task of training neural networks. 

C. Streaming Test data 
This test focuses on the amount of time it takes to classify 

pseudo-streamed EEG data.  A five second EEG stream is read 
from file, split into smaller time sets if needed, processed to 
introduce the 3 frame lag, and then sent across the network to 
the waiting resources/cluster in order to classify.  All individual 
resources/nodes classify and then send their prediction on to a 
node responsible for producing a consensus classification.  In 
the Granules example, we use a reducer for this, while the pure 
R example simply performs a post-processing step at the source 
which performs the same function.  We are not interested in the 
quality of the classifications – our artificial neural networks are 
not very complex, and we are only using 3 separately trained 
networks – not enough to have a strong consensus.  Instead, we 
are interested in the amount of time it takes to read the file, 
process the data, send it to be classified, and to tally together all 
the predictions to result in an expert classification. 

In these tests, we look at data gathered from classifying the 
full 5 second streams, 1 second streams, and approximately 
250ms streams.  While the 5 second streams are larger than we 
would send in a typical BCI application, the 1 second and 
250ms are closer to what we expect.  By initially testing the 5 
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second streams, we can isolate any overhead generated by our 
pseudo-streaming application as it splits the 5 second streams 
into smaller streams, as well as find out if there is any 
preference for processing streams of the size the neural 
networks were initially trained with. 

TABLE VIII.  CLASSIFICATION TIMES IN MILLISECONDS 
Method Stream 

Time 
Mean 
(ms) 

Min 
(ms) 

Max 
(ms) 

SD 
(ms) 

Snowfall 5s 8884.60 8797.745 9069.47 85.82 
Granules  5s 141.69 136.42 266.63 12.75 
Snowfall 1s 5825.71 5815.38 5857.98 10.09 
Granules 1s 93.16 47.51 492.68 32.13 
Snowfall 250ms 2831.32 2830.38 2849.83 2.03 
Granules 250ms 87.25 48.57 92.67 4.49 

These results demonstrate that Granules significantly 
outperforms Snowfall in the classification of EEG streams. 
More importantly, these results demonstrate that Granules can 
classify EEG streams in realtime. 

D. Granules Specific Tests 
In order to explore the limitations and capabilities of 

Granules, we ran several Granules specific tests.  These tests 
are designed to simulate load from multiple users, and isolate 
any problems that may occur as a resource is overloaded.  We 
ran a series of stress tests using a single resource on a single 
machine.  In these cases, the resource was allowed access to 4, 
6 and 8 cores.  For each core available, we stressed the network 
by having multiple generators sending EEG streams of 250ms 
every 250ms.  We attempted to ensure that no two generators 
were sending data in the exact same millisecond, as this would 
be highly unlikely in a live environment.  

 
Figure 5.  Maximum supported users for 4, 6, and 8 cores with Granules-JRI 

EEG classification 
In each test, we sent about a minute of continuous streamed 

data from multiple generators.  In these tests we increase the 
number of generators for a given number of cores until we hit 
the point where the resource was overloaded with requests.  
Once this happens, the resource cannot handle classification 
requests in an acceptable amount of time, classification results 
for 250ms of EEG data start taking longer than 250ms to return 
to the user.  The results of these stress tests can be seen in 
Figure 5.  

TABLE IX.  shows the mean times for classification in our 
stress tests.  All means are well below the maximum acceptable 
time (250ms), but through our tests we discovered that 

increasing the number of concurrently connected clients for any 
of the cores would result in classification requests taking too 
long to return. 

TABLE IX.  MEAN CLASSIFICATION TIMES IN STRESS TESTS ON A SINGLE 
MACHINE IN MILLISECONDS 

4 Cores 6 Cores 8 Cores 
66.1 55.29 51.9 

We further stressed our setup by attempting to handle 75 
and 150 concurrent users on 5 and 10 machines respectively.  
While our previous tests showed that we could support up to 17 
users on a single 8 core machine, in these tests we decided to 
only have 15 users on a single 8 core machine.  As each 250ms 
EEG signal results in about 20KB of data needing to be sent 
across the network, with 150 users on 10 machines, we are 
generating 12MB of data per second.  With 75 users, we were 
generating half that, 6MB/s and overloading our network 
switch.  For further stress tests, we needed to set up a 
temporary network of ten 8-core machines on a gigabyte 
switch. 

The results of our tests are displayed in TABLE X.  Across 
these tests, we achieved over 99.9% reliability.  For 75 users, 
only 0.01% of the messages were over the 250ms threshold – 1 
of every 10,000 messages was lost, or once every 41 minutes a 
user would lose a 250ms data packet.  For 150 users, these 
statistics increased slightly: 0.04% of the messages were over 
the 250ms threshold: one of every 2,500 messages, or once 
every 10 minutes the response time was too slow.  Due to this 
pattern, we believe that these losses may be a direct result of 
network overload, and we shall look into compression schemes 
in our future work. 

TABLE X.  STRESS RESULTS FOR 75 AND 150 CONCURRENT USERS 
ACROSS 10 MACHINES 

 Mean 
(ms) 

Min 
(ms) 

Max 
(ms) 

SD 
(ms) 

75 Users 64.33 21.69 268.30 20.51 
150 Users 69.81 22.01 352.82 22.49 

From these results, we can clearly see that our approach is 
capable of scaling up to handle hundreds of users 
simultaneously.  Our current bottleneck appears to be network 
bandwidth. 

VII. RELATED WORK 
As mentioned previously, we have relied heavily on the R 

package Snowfall [10] in this work.  We are also relying on our 
cloud runtime, Granules [2, 3], for our distributed approach, 
along with JRI [9]. 

Apart from Snowfall, there are several other R libraries 
which focus on parallel computing.  One of these is 
mapReduce[13], which is an R implementation of the 
MapReduce paradigm [4].  This library extends R’s internal 
‘apply’ function to handle mappings across multiple cores on a 
single machine.  While users can develop their own apply 
function to act in parallel across multiple machines, this leads 
to an initial startup cost needed to convert sequential code.  We 
would have additionally needed to rework the original R scripts 
to fit into the MapReduce paradigm, and would then have 
needed to use Snow or Snowfall to gain access to multiple 
machines.  We believe that using Snowfall yields a closer 
comparison of cost and runtime with Granules. 
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Hadoop[14] is another Java-based cloud computing 
environment which supports the Map-Reduce paradigm. 
Hadoop has execute-once semantics, which precludes 
computations from executing more than once while retaining 
state. Hadoop also does not incorporate support for data 
streams as a data type; so, we would not be able to use Hadoop 
in a live situation, where multiple users can continuously use 
trained resources.  The recent HadoopStreaming [15] utility 
allows users to use map and reduce code written in languages 
other than java, such as R and python.  It allows Hadoop to 
operate upon data from the command line, but it still relies on 
run-once semantics, without support for state retention, 
dormant computations, or datastreams. 

Other frameworks which support the Map-Reduce 
paradigm include Phoenix [16], QtConcurrent [17] and Skynet 
[18].  While these all support the paradigm, like Hadoop they 
only support run-once semantics. They have also been designed 
to operate on static files, and not dynamic data streams. 

There are several machine learning approaches which have 
made use of a distributed environment.  Aside from forming 
consensus networks, as we have in our work here, there are 
swarm approaches such as ant-colony[19].  These approaches 
make use of multiple agents, which are responsible for learning 
about their portion of data.  While there is a history of 
exploring the use of multiple agents in a distributed 
environment [20], to the best of our knowledge this is the first 
attempt at classifying EEG signals from multiple users using 
cloud computing techniques.  

VIII. CONCLUSIONS AND FUTURE WORK 
While there is a definite overhead seen when using 

Granules for training a cloud, the amount of time it takes to test 
various sizes of EEG data streams shows that Granules can 
actually classify significantly more efficiently. As the primary 
bottleneck for real-time EEG signal processing is in the actual 
classification, as opposed to the training of a network, we do 
not see the training overhead as an impediment to further 
research into this area. Snowfall is not designed to handle 
streaming data, so it is understandable that it does not handle 
streaming data as well as Granules, which was designed 
specifically for that task. We also found that using JRI to 
handle R calls from Java does not incur an inhibitive overhead 
to the computations. While we are currently using JRI to 
interface with R computations, there are two approaches that 
we will explore to optimize the interface to R computations. 
First, we will explore the use of sockets for communications.  
Another viable approach would be the use of chaining, where 
we interface with R via C++; in previous experiments, we have 
found that our Java-C++ bridge introduces a communication 
overhead of around 1 millisecond, so this approach could be 
promising. 

In the future, we plan to move from our pseudo-streams of 
EEG signals we used here to simulate streaming data to real-
time streaming data from an EEG cap.   

There are also several plans in place to modify the basic 
operation of the neural networks. In the current 

implementation, there is no way to retrain a network if we want 
to change the lag level except to restart the clusters. Our future 
investigation will focus on allowing a user to change this value 
while the system is running. 

  Another change would be to implement an online training 
method – this would allow the networks to continue to learn 
and refine as more data came in.  While this would add to the 
amount of computations generated by any interaction with a 
user, we believe that the potential increases in accuracy as well 
as removing the need to take a network offline and potentially 
spend hours to retraining would prove to balance out this cost. 
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