
1

Analyzing Electroencephalograms Using Cloud
Computing Techniques

Kathleen Ericson, Shrideep Pallickara, and Charles W. Anderson

Department of Computer Science
Colorado State University

Fort Collins, US
{ericson, shrideep, anderson}@cs.colostate.edu

Abstract— Brain Computer Interfaces (BCIs) allow users to
interact with a computer via electroencephalogram (EEG) signals
generated by their brain. The BCI application that we consider
allows a user to initiate actions such as keyboard input or control
the motion of their wheelchair. Our goal is to be able to train the
neural network and classify the EEG signals from multiple users
to infer their intended actions in a distributed environment. The
processing is developed using the Map-Reduce framework. We
use our cloud runtime, Granules, to classify these EEG streams.
One of our objectives is to be able to process these EEG streams
in real-time. The BCI software has been developed in R, which is
an interpreted language designed for the fast computation of
matrix multiplications, making it an effective language for the
development of artificial neural networks. We contrast our
approach of using Granules with a competing approach that uses
an R package – Snowfall that simplifies execution of R
computations in a distributed setting. We have performed
experiments to evaluate the costs introduced by our scheme for
training the neural networks and classifying the EEG signals.
Our results demonstrate the suitability of using Granules to
classify multiple EEG streams in a distributed environment.

Keywords Brain Computer Interfaces, Cloud computing, R,
Granules, MapReduce, EEG, Artificial Neural Networks

I. INTRODUCTION
Brain Computer Interfaces (BCIs) allow users to interact

with a computer via electroencephalogram (EEG) signals. The
BCI application that we consider in this paper allows users
who have lost voluntary motion control to initiate actions
ranging from controlling a wheelchair [1] to interacting with
keyboard interfaces based on their thoughts. EEG signals
gathered using electrodes placed on the user’s scalp are
analyzed using a neural network to reason about the actions
initiated by the user. Our focus here is to investigate the
possibility of performing such analysis using our cloud
runtime, Granules.

Granules [2, 3] is a lightweight runtime for cloud
computing and is designed to orchestrate a large number of
computations on a cloud. The runtime is designed to support
processing of data produced by sensors. Granules supports two
of the most dominant models for cloud computing MapReduce
[4] and dataflow graphs [5]. In Granules individual
computations have a finite state machine associated with them.
Computations change state depending on the availability of
data on any of their input datasets or as a result of external

triggers. When the processing is complete, computations
become dormant awaiting data on any of their input datasets.

In Granules, computations specify a scheduling strategy,
which in turn govern their lifetimes. Computations specify
their scheduling strategy along three dimensions: counts, data
driven and periodicity. The counts axis specifies limits on the
number of times a computation task will executed. The data
driven axis specifies that a computation task needs to be
scheduled for execution whenever data is available on any one
of its constituent datasets, which could be either streams or
files. The periodicity axis specifies that computations should
be scheduled for execution at predefined intervals. One can
also specify a custom scheduling strategy that is a combination
along these three dimensions; for example, limit a
computation to be executed 500 times either when data is
available or at regular intervals. A computation can change its
scheduling strategy during execution, and Granules enforces
the newly established scheduling strategy during the next
round of execution.

Computations in Granules build state over successive
rounds of execution. Though the typical CPU burst time for
computations during a given execution is short (seconds to a
few minutes), these computations can be long-running with
computations toggling between active and dormant states.

There are two benefits to analyzing EEG signals using
Granules. Since Granules can interleave streams, and the
concomitant processing, from multiple users on a single
machine there is a potential for reducing costs; in the current
BCI implementations, there is a dedicated processing unit per
user. Since Granules orchestrates computations on the set of
available machines, even a mid-sized cluster can support a
fairly large number of users. This leads us to a second benefit:
EEG data from a large number of users can improve the
training of the neural networks, which could then be used to
improve the accuracy of the inference algorithms.

A. Research Challenges
There are three research challenges that we need to address.
1. Can we process these EEG streams in real-time? The

scheduling overheads introduced by Granules should not
preclude real-time processing.

2. Can we interleave processing of EEG streams from
multiple users on the same machine? Setting aside one
machine per user would be inefficient and restrictive.

2

3. Can we scale up to a sufficiently large number of users on
a set of available machines? We should be able to
accommodate a greater number of users as more machines
become available.

B. Paper Contributions
Our contributions are broadly in the area of BCI and cloud
computing. The BCI contributions stem from the fact, to the
best of our knowledge, this is one of the first attempts to
classify EEG streams from multiple users in realtime in a
cluster setting. Cloud computing contributions stem from the
fact that this is the first time that the MapReduce programming
model has been used to classify such EEG streams.

C. Paper Organization
The remainder of this paper is organized as follows: In section
II we describe our BCI application. In section III we describe
how we train the neural network and classify EEG signals
using Granules. We describe an alternative scheme using an R
package, Snowfall for performing the distributed analysis. The
experimental setup for our experiments is described in section
IV, with the results presented in section VI. We present our
conclusions and future directions in section VIII.

II. OUR BCI APPLICATION
The BCI application we consider allow users who have lost

voluntary motor control to interact with a computer using
electroencephalograms (EEG). Users are fitted with an EEG
cap, which holds a number of electrodes close to the users
scalp. These electrodes pick up electrical impulses from the
brain. Since these are non-invasive, only surface charges are
picked up. These can be noisy, so correctly interpreting a
user’s intention can be difficult.

In general, users are given several tasks which involve
different areas of the brain. For example, a visual or spatial
problem should involve high activity (or strong electrical
pulses) from the occipital lobe in the back of the head.
Imagined movement, on the other hand, involves activity in
the opposite hemisphere of the brain (left leg movement can
be seen in the right hemisphere of the brain), as well as some
frontal lobe activity. Tasks are selected to keep user fatigue to
a minimum, users will generally find some tasks simpler than
others, as well as attempting to keep EEG activity spatially
separate. Having tasks spread out in different areas of the
brain helps classifiers discriminate between different tasks,
increasing accuracy. The tasks used in our application are:
imagined left leg movement – which should be primarily seen
in the right hemisphere, imagined right hand movement –
primarily in the left hemisphere, a mathematical task – the
frontal lobe, and 3D image manipulation – the occipital lobe.
These tasks were chosen primarily for their distinct EEG
patterns.

In the simplest case, a BCI application would ask a user to
perform two separate tasks: one for confirmation, one for
negation. While this is a fully-functioning interface, it can be
quite tedious for more complex interactions, such as
navigating a crowded hallway with a wheelchair. In these
cases, more tasks are required of the user. In our BCI
application, we are using data generated for a typing
application. The application allows the user to select the next

letter to type by subdividing the alphabet into quarters, and
then further subdividing each selection until the user selects a
single letter. While this is the original application our datasets
were generated for, it is possible to take our generic backend
and apply it to any application, which has been designed to
handle four user tasks as inputs.

For this work, we are using an artificial neural network with
Logistic Regression for classification tasks. Artificial neural
networks, usually referred to as neural networks, are inspired
by the interconnection of neurons in the brain. A basic neural
network involves an input layer, a hidden layer, and an output
layer. A very high-level overview can be seen in Figure 1.
While the number of units in the input layer needs to match the
dimensionality of the inputs, and the units in the output layer
needs to match the dimensionality of the expected output, there
can be any number of hidden units in the hidden layer. A
general rule of thumb is that a larger number of hidden units
can yield better results, but takes longer to train.

The hidden units are what drive a neural network. A neural
network learns by modifying the parameters in this layer as
well as the output layer. While larger numbers of hidden units
can lead to a better trained network, it can also lead to over-
specialization. A neural network may become too specialized
to the training data, and cannot generalize well enough to
handle new inputs.

In our implementation, the hidden units start with a very
small, randomized weight which is applied to each input.
Through the training process, these weights are modified to
produce output closer to what is expected.

Figure 1. Simple Artificial Neural Network with one hidden layer,

containing 4 hidden units
We are currently using an offline training method to train

our neural networks. In offline training, we have a set of stored
data consisting of sets inputs and their expected output. The
neural network is trained by sending it input/output pairs, and
finding the best set of weights for the hidden layer to minimize
the error between actual and expected output.

The algorithms for training these neural networks and
classifying EEG packets have been implemented in R. R is an
interpreted language specialized for fast computation of matrix
multiplications [6]. This makes it an ideal language for several
types of computations, ranging from financial market analysis
[7] to Bioinformatics applications [8], to Brain Computer
Interfaces [1]. As an interpreted language, R allows for quick
prototyping and testing. While interpreted languages are
inherently not as fast as compiled code written in C or C++, R
makes heavy use of C libraries in order to achieve fast matrix

3

calculations – making it a better choice for computation-heavy
applications, unlike other interpreted languages, such as
Python.

III. CLASSIFYING EEG SAMPLES USING GRANULES
The EEG processing algorithms have been developed in a

language (R) that is different from the runtime’s native
language (java). Rather than re-implement these algorithms in
Java, we decided to incorporate support for R computations in
our runtime. Here, a challenge is to ensure that overheads
introduced by bridging to R are acceptable. Since computations
in Granules are activated when data is available on any of the
input streams, an added consideration for the bridging scheme
is to ensure that the activation overheads are acceptable.

To handle communication between Java and R, our
Granules implementation uses the Java R Interface (JRI)
package [9]. This interface allows an R session to be started
and used through Java. With this, a Granules resource is able to
start up an R session and train and classify through this
session. This means that each resource can keep generated data
(such as the trained neural networks) inside the R session,
meaning less data needs to be passed across the network, as
well as between Java and R.

The Granules-JRI bridge is lightweight, and does not
maintain data structures that take up memory. Computation
state is maintained within the Java and R computations, but not
the bridge. Communications across this bridge are compact
execution statements. This means that the minimal amount of
data is contained in any message sent across the bridge.
Instead of sending multiple commands through the Granules-
JRI Bridge, we will start a complex command which will in
turn perform the necessary series of operations.

The Granules runtime is started up on any machine that is
expected to execute computations. The distribution of these
computations is load balanced over the set of available
machines. In our implementation, the processing is set up as a
Map-Reduce [4] computation. Computations, both mappers
and reducers, specify a scheduling strategy that activates them
when data is available on any one of their input streams.
Mappers produce their outputs as streams, and the reducer is
configured to register an interest in outputs produced by
individual mappers. The mappers are responsible for training
and retaining a neural network. The first job of a mapper is to
set up its bridge to R. Once the bridge has been set up, the
mapper can train its neural network, and is then ready to handle
incoming requests for classification by users. The mappers pass
along any predictions to the reducer, which then makes a final
prediction based on the results from all the mappers and sends
the results back to the user. A high level overview of this
process can be seen in Figure 2.

While there may be many mappers, there is only a single
reducer. In Granules, computations can specify the data
streams that they are interested in, and here each mapper has
been subscribed to listen for EEG streams. Mappers are not
attached to any single user, allowing a single Granules cloud to
simultaneously handle streaming EEG data from multiple
users. EEG data is streamed from a user, and read by each
mapper. This data is not just a stream from a single electrode,
but a combined stream of signals from all electrodes attached to
the user. The combined EEG stream is analyzed by the neural
network stored in the mapper. The neural network has been

trained on data of the same dimensionality (the same number of
electrode streams), and takes the full stream as input. Through
the training process, the neural network has modified the
weights, or importance of each separate stream, and developed
a process for determining which type of signal the user is
specifically trying to produce. The neural network uses this
process to decide on the most likely classification based off of
the current input, and will send this on as its prediction. The
types of signals are predetermined, and cannot be modified
once a neural network has been trained. Depending on the type
of BCI application that the neural network is being trained to
support, the network will be trained to recognize 2 or more
specific signal patterns.

Figure 2. High level overview of Granules implementation

After a mapper has finished analyzing the stream, it will
send a classification to the reducer. The reducer is responsible
for gathering these classifications from all mappers, and
determines the consensus classification by finding which
classification was most often predicted by the mappers. Once
the reducer has found a final classification, it then returns to the
user the consensus classification. In the future, we wish to
explore the benefits of training a neural network in the reducer.
This would allow the reducer to learn which mappers gave
better predictions, and learn to weight the classifications
appropriately.

Our approach of multiple mappers and a single reducer
allows us to cut short the training time for the neural networks,
and still gain accuracy through a consensus. Any single neural
network in this approach has not been trained exhaustively, so
has a lower accuracy than a more thoroughly trained network.
By allowing each mapper to independently train and keep a
neural network, we can create a large number of these partially
trained networks. Each network will learn a slightly different
thing, meaning that together these networks can perform as
well, if not better, than a single well-trained network.

Computations in Granules are capable of retaining state
across successive executions, so the neural networks can be
stored with each mapper and do not need to be retransmitted
for testing new inputs. This cuts down on the amount of data
that needs to be streamed across the cloud, and means that a
larger neural network in the Granules environment would only
add computation time on training, not on subsequent test runs.

IV. USING SNOWFALL
Snowfall [10] is an R package based on the Snow [11]

package. Snow was one of the first R packages to allow

4

programmers to distribute R code through a cloud without
requiring a strong background in high performance computing.
Snowfall builds on Snow and offers an easier interface, as well
as efficient built-in load balancing. In our experiments, all calls
with Snowfall are load-balanced, so if one node finishes
computations before another slower machine, it will start
running the other job as well, in order to finish in the most
efficient manner possible.

Snowfall is designed so that programmers do not need to
modify existing sequential code in order to distribute an
application across a cloud. It operates along the same principle
as the MapReduce paradigm – a computation and data are sent
to different nodes, each node is responsible for performing the
computation on the data sent to it, and all results are then
returned to the source which distributed the computation.

Figure 3. High level overview of Snowfall implementation

With Snowfall, a cluster is created from a list of potential
resources (machines). Each resource listed is then checked for
current load, and is added to the cluster if the load is light
enough. After a cluster is established, it can be used for
processing. Maintaining variables for later processing across
cluster nodes is difficult, and can result in undefined results,
particularly when a load-balanced approach is used. Because
of this, subsequent testing of data with a trained neural network
requires the trained neural network to be sent to cluster nodes
along with the data to be processed.

A high level overview of the Snowfall implementation is
shown in Figure 3. A source running R sets up a Snowfall
cloud, with a specified set of nodes. The source then sends all
data needed for the computation to each node, and each node
then returns the results to the source.

As the purpose of this research is to evaluate streaming
capabilities, as opposed to evaluating classification methods,
we will not be checking classifications for accuracy. We
instead focus on the amount of time off-line training takes as
well as the time it takes to classify streaming data.

V. EXPERIMENTAL SETUP
The machines (8-core Xeon, 16GB RAM) involved in the

experiments were hosted on a 100 Mbps LAN. We used
version 1.6.0_18 of the Java Virtual Machine, version 2.11.1 of
R, and version 1.61 of Snowfall in our benchmarks.

In our experiments, both Snowfall and Granules contain the
same R code to create, train, and use neural networks. Each,
however, has a slightly different distributed backend.
Additionally, each has a slightly different method of obtaining
the pseudo-streamed data for classification, since Snowfall is
not designed to handle streaming data. We first use an R script
to read in EEG data from files, and pass this data to distributed

environment for classification. This same script is used in both
the Granules and Snowfall approach, though in Granules the
data is then streamed to awaiting resources, while the Snowfall
version simply pushes the data to the cluster.

A major difference between the Snowfall and Granules
training approaches is where the initial training data is loaded.
Snowfall reads in all the training data, and stores it as a local
variable. This variable is then passed to all nodes in the
network for training, using the function sfExport(). In the
Granules version, each resource needs direct access to the
training data, and is responsible for reading the data from file
independently.

A. Experimental Data
The actual placement of electrodes followed the

international 10-20 system of electrode placement, and is
depicted in Figure 4. For these experiments, 19 channels were
used: FP1, FP2, F3, Fz, F4, F7, F8, C3, Cz, C4, T3, T5, T4, T6,
P3, Pz, P4, O1, and O2 from a Mindset EEG amplifier by
Neuropulse-Systems (http://www.np-systems.com) with a
sample rate of 256 Hz. The data was preprocessed before
analysis – eye blinks and jaw clenches were filtered from the
data, and the input has been further scrubbed by normalizing
the data. This level of preprocessing is typical of datasets used
for BCI applications.

The International 10-20
System of Electrode
Placement:
F - Frontal lobe
T - Temporal lobe
C - Central lobe
P - Parietal lobe
O - Occipital lobe

"Z" refers to an electrode
placed on the mid-line.

Figure 4. The International 10-20 System of Electrode Placement
For classification purposes, four different tasks were

attempted: imagined right hand movement, imagined left leg
movement, counting backwards from 100 by 3, and imagining
a spinning computer. These tasks involve increased activity in
different areas of the brain, making them good candidate
activities for analysis. Having four different tasks to classify
allows a user to differentiate between four different options
when using a BCI application. These options could include
choosing the next letter to type, or the direction to move a
wheelchair. All movements were imagined in order to keep
with the premise of a primary user being unable to voluntarily
control muscle movements. It is also possible that actual
movements may introduce noise into any gathered data.

We trained the neural networks to classify various intervals
of EEG data as one of these four tasks. The training sets are
made up of 10 five-second sequences of each task. This data
was gathered from a single user familiar with the tasks. Since
the user who generated the data was familiar with the tasks, the
data is clearer than an untrained user.

5

B. Initializing the Networks
Both the Granules and Snowfall based versions go through

an initial training of neural networks. In the Snowfall
implementation, a sequence of neural networks is returned -
one for each resource trained. In the Granules version, each
computation starts its own R session, and trained networks are
held in session memory. For Granules, incoming data is first
read in by a generator and then streamed to each resource for
processing. This approach simulates real-time streaming which
we may be able to expect from a person wearing an EEG
cap. In the Snowfall version, Snowfall executes a
LoadBalanced evaluation, where each resource receives a
neural network and the set of data to be classified. Should one
resource be running slower than others, the data originally sent
to the slower machine can be resent to a faster machine to help
cut down on overall execution time.

Each neural network is designed to use logistic regression
for classification, contains 10 hidden units, and goes through a
maximum of 400 iterations of scaled conjugate gradient
descent [12] during the training process to optimize network
weights, attempting to achieve a mean square root error
(MSRE) of 0. The hidden units are randomly initialized with
very small weights. This random weight initialization ensures
that each network trained is slightly different from the others.
This diversity is then used to help procure a joint classification
based on the predictions of several small networks.

It is theoretically possible that the neural network will
converge on a solution in less than 400 iterations, but due to the
scale of the data being classified and the small number of
hidden units it is highly unlikely that this will ever
happen. During our tests, this situation never occurred, and the
maximum number of iterations was always used.

The current implementation uses an offline method for
training the artificial neural networks. All data used to train is
on file, and the neural network is frozen once it finishes
training – it does not continue to learn as data is classified. An
area for future research is to explore the feasibility of on-line
training, which would allow a neural network to continue
learning as it is functioning. This approach would be able to
fully leverage the benefits of multiple simultaneous users in
real-time. After training has been completed, we use a reserved
training set to test classification times.

To simulate streaming EEG signals in a way which both
Granules and Snowfall can handle, we developed an R script to
read a 5 second stream from file, split it if necessary, and send
it out to be classified. With Granules, data is read in, and sent
across the network to all resources. In the Snowfall version,
data is read in from file – using the same R script as the
Granules version – and is then dispatched by Snowfall to each
node in the cluster along with a neural network to use for
classification. In the Granules version, all classifications are
then passed on to a node which then assesses the joint
prediction and returns that result to the user. Snowfall returns a
set of predictions, which are then passed into an R function on
the local machine. This local function then returns the joint
prediction.

C. Data Processing
For both training and test data sets, a lag of 3 frames is

introduced into the data. This allows the artificial neural
networks to see the previous 3 frames of the 19 channels of

data, as well as the current incoming 19 channels. This
approach gives the neural network more data to work with for
every frame to be classified, and can improve accuracy. For
these experiments, we kept the 3 frame lag constant but it is
possible to vary this; however, once a network has been trained
to use a particular lag, it will need to be retrained if a different
lag is desired. The lag processing is handled by an R script
which generates a pseudo-stream. We have included this
processing in all of our timing, as we would be doing these
computations on the fly in a live situation, as data was read in
from the EEG cap.

VI. PERFORMANCE MEASUREMENTS
To fully grasp any lags inflicted by using Granules and JRI,

we developed several tests. These tests are designed to bring to
light any overheads incurred as the amount of nodes tested
increases, as well as the amount of training data increases. For
each test, we looked at both the original training cost, as well as
the amount of time it took to get a full response from every
node when various lengths of EEG data is streamed for testing.
A Granules resource is configured with a set of worker threads.
There are two components to the scheduling overheads
introduced by Granules: activation and queuing delays.
Activation delay is the time that elapses between the receipt of
data over a stream, and the time that it takes to activate a
dormant computation’s finite state machine and have it ready
for execution: this is typically in the order of 700-800
microseconds. Even though computations are activated, if the
configured worker threads are busy the activated computations
are queued till such time that a worker thread is available:
queuing delays depend on the size of the queue when the
computation was added and the average processing time per
computation.

A. Baseline Tests
Before launching into the full suite of tests designed for

assessing cloud applications, we first performed baseline tests.
To get baseline values, we first ran a simple series of tests on a
single machine, with a single training set. These tests use the
base R code that is called in both our Snowfall and Granules
implementations.

With these baseline tests, we should be able to isolate
communication costs incurred in the move to a distributed
setting, as well as find any idiosyncratic behavior in R. We
looked at several measures, both directly reflected in the
distributed tests – such as testing input streams – and indirect
costs, such as loading training data. The baseline tests gather
timing data for the following actions: loading a single training
set, using the gathered data to train a neural network, and then
classifying five seconds, one second, and 250ms of streamed
data. Not only will this give us a baseline for each computation
we will test later on in the distributed environments, but it also
shows the basic cost of loading training files in R. This is a
time inherent in all further tests, and also limits the capabilities
of our current off-line training approach.

The results from these tests are shown in TABLE I.
through TABLE III. For R to load and convert a 2MB EEG
file, we have a constant overhead of roughly 6.5 seconds.
While this is acceptable for our current training sets (we are
using a maximum of 4, about 8MB on disk, which takes around
half a minute to fully load), this could potentially be a

6

bottleneck for future work, when we hope to leverage a cloud
setting in order to amass training data from multiple users.
These 2MB files contain 10 sets of 4 activities for 5 seconds
apiece – about 200 seconds of EEG data. The baseline times to
load a single dataset can be seen in TABLE I.

TABLE I. BASELINE TIME TO LOAD A SINGLE TRAINING DATASET (~
2MB) IN MILLISECONDS

Mean (ms) Min (ms) Max (ms) SD (ms)
6581.602 6439.742 6822.34 101.3716

We then looked at the amount of time it took to train a
single neural network with one training set. Our results are
shown below in TABLE II. . While this will be directly
effected by the training set size, we should still be able to get
an accurate read of this relationship in our subsequent runs. In
this stand-alone case, it regularly takes over three minutes to
train a single network. When this is done in a distributed
setting, the training occurs in parallel, so we only see the
amount of time for a single network to be trained even in an
environment which has multiple networks.

TABLE II. BASELINE TIME TO TRAIN A NEURAL NETWORK FROM ONE
TRAINING SET IN MILLISECONDS

Mean (ms) Min (ms) Max (ms) SD (ms)
194463.7 192433.3 197094.9 1300.87

The last tests we ran as a baseline determined the base cost
for classifying streaming data. The feasibility of using R as a
real-time backend to BCI applications in a distributed
environment hinges on these results. If, for example, it takes
more than one second to classify one second of EEG data, it
would be impossible to make the system function in real-time.
For these tests, we looked at five seconds of data (the size from
our training sets), one second, and 250 milliseconds of EEG
data. The results of our experiments can be seen in TABLE III.
From these results, we can see that an R backend to EEG
classification is clearly possible – for every stream time tested,
the processing time is less than 1% of the stream time.

TABLE III. BASELINE CLASSIFICATION TIMES FOR A SINGLE NEURAL
NETWORK IN MILLISECONDS

Stream
Time

Mean (ms) Min (ms) Max (ms) SD (ms)

5s 23.0432 22.17889 23.56791 0.4734237
1s 5.28194 4.909039 11.16085 0.8568976
250ms 1.710529 1.673937 1.926184 0.03777157

B. Training Overhead
1) One Resource, One Training Set

For this test, a single resource was used, as well as a single
training set (one set of 10 five-second sequences of each task).
This is roughly 2MB on disk. This test is designed to get a
baseline for the amount of time it takes to stream to a single
resource using the smallest subset of our training data. As can
be seen below in

TABLE IV. TRAINING A SINGLE NEURAL NETWORK IN A DISTRIBUTED
SETTING WITH ONE TRAINING SET IN MILLISECONDS

Method Mean (ms) Min (ms) Max (ms) SD (ms)
Snowfall 409860.5 403364.3 419965.7 4216.875
Granules 313304.2 306402 329149 5141.031
2) Multiple Resources, One Training Set

This test is designed to bring to light any network latencies
incurred by either approach. As the number of resources

needing to be streamed to increases, we want to see if there is a
noticeable difference in the time it takes to spread data across
the network. For this experiment, we used three resources, and
a single training set. Again, the training data is approximately
2MB on disk.

TABLE V. TRAINING 3 NEURAL NETWORKS IN A DISTRIBUTED SETTING
WITH ONE TRAINING SET IN MILLISECONDS

Method Mean
(ms)

Min (ms) Max (ms) SD (ms)

Snowfall 462626.2 401475.9 483235.9 23512.64
Granules 675968.8 610550 772679 52823.21

3) One Resource, Multiple Training Sets
In this test we look at the cost of streaming data across the

network, particularly in the case of initialization. For this test
we used four sets of 10 five-second sequences of the four tasks.
These datasets total to just about 8MB on disk.

TABLE VI. TRAINING A SINGLE NEURAL NETWORK IN A DISTRIBUTED
SETTING WITH 4 TRAINING SETS IN MILLISECONDS

Method Mean (ms) Min (ms) Max (ms) SD (ms)
Snowfall 1001631 971224 1020680 17743.27
Granules 1933540 1782531 2057664 110686.7
4) Multiple Resources, Multiple Training Sets

This test explores the cost of sending multiple training sets
to multiple resources, as well as any network lag from
receiving results from each of the resources. We do not expect
to see a noticeable difference between these results and when
we looked at multiple resources and a single training set, but
there is a possibility that the larger training set exacerbates any
network lag from communicating with multiple resources.
Again, the training sets are 8MB on disk.

TABLE VII. TRAINING 3 NEURAL NETWORKS IN A CLOUD WITH 4
TRAINING SETS IN MILLISECONDS

Method Mean (ms) Min (ms) Max (ms) SD (ms)
Snowfall 988410.4 964499 1023549 17513.37
Granules 1964255 1779853 2131574 136452.1

From these results, we see that Snowfall outperforms
Granules in the initialization task of training neural networks.

C. Streaming Test data
This test focuses on the amount of time it takes to classify

pseudo-streamed EEG data. A five second EEG stream is read
from file, split into smaller time sets if needed, processed to
introduce the 3 frame lag, and then sent across the network to
the waiting resources/cluster in order to classify. All individual
resources/nodes classify and then send their prediction on to a
node responsible for producing a consensus classification. In
the Granules example, we use a reducer for this, while the pure
R example simply performs a post-processing step at the source
which performs the same function. We are not interested in the
quality of the classifications – our artificial neural networks are
not very complex, and we are only using 3 separately trained
networks – not enough to have a strong consensus. Instead, we
are interested in the amount of time it takes to read the file,
process the data, send it to be classified, and to tally together all
the predictions to result in an expert classification.

In these tests, we look at data gathered from classifying the
full 5 second streams, 1 second streams, and approximately
250ms streams. While the 5 second streams are larger than we
would send in a typical BCI application, the 1 second and
250ms are closer to what we expect. By initially testing the 5

7

second streams, we can isolate any overhead generated by our
pseudo-streaming application as it splits the 5 second streams
into smaller streams, as well as find out if there is any
preference for processing streams of the size the neural
networks were initially trained with.

TABLE VIII. CLASSIFICATION TIMES IN MILLISECONDS
Method Stream

Time
Mean
(ms)

Min
(ms)

Max
(ms)

SD
(ms)

Snowfall 5s 8884.60 8797.745 9069.47 85.82
Granules 5s 141.69 136.42 266.63 12.75
Snowfall 1s 5825.71 5815.38 5857.98 10.09
Granules 1s 93.16 47.51 492.68 32.13
Snowfall 250ms 2831.32 2830.38 2849.83 2.03
Granules 250ms 87.25 48.57 92.67 4.49

These results demonstrate that Granules significantly
outperforms Snowfall in the classification of EEG streams.
More importantly, these results demonstrate that Granules can
classify EEG streams in realtime.

D. Granules Specific Tests
In order to explore the limitations and capabilities of

Granules, we ran several Granules specific tests. These tests
are designed to simulate load from multiple users, and isolate
any problems that may occur as a resource is overloaded. We
ran a series of stress tests using a single resource on a single
machine. In these cases, the resource was allowed access to 4,
6 and 8 cores. For each core available, we stressed the network
by having multiple generators sending EEG streams of 250ms
every 250ms. We attempted to ensure that no two generators
were sending data in the exact same millisecond, as this would
be highly unlikely in a live environment.

Figure 5. Maximum supported users for 4, 6, and 8 cores with Granules-JRI

EEG classification
In each test, we sent about a minute of continuous streamed

data from multiple generators. In these tests we increase the
number of generators for a given number of cores until we hit
the point where the resource was overloaded with requests.
Once this happens, the resource cannot handle classification
requests in an acceptable amount of time, classification results
for 250ms of EEG data start taking longer than 250ms to return
to the user. The results of these stress tests can be seen in
Figure 5.

TABLE IX. shows the mean times for classification in our
stress tests. All means are well below the maximum acceptable
time (250ms), but through our tests we discovered that

increasing the number of concurrently connected clients for any
of the cores would result in classification requests taking too
long to return.

TABLE IX. MEAN CLASSIFICATION TIMES IN STRESS TESTS ON A SINGLE
MACHINE IN MILLISECONDS

4 Cores 6 Cores 8 Cores
66.1 55.29 51.9

We further stressed our setup by attempting to handle 75
and 150 concurrent users on 5 and 10 machines respectively.
While our previous tests showed that we could support up to 17
users on a single 8 core machine, in these tests we decided to
only have 15 users on a single 8 core machine. As each 250ms
EEG signal results in about 20KB of data needing to be sent
across the network, with 150 users on 10 machines, we are
generating 12MB of data per second. With 75 users, we were
generating half that, 6MB/s and overloading our network
switch. For further stress tests, we needed to set up a
temporary network of ten 8-core machines on a gigabyte
switch.

The results of our tests are displayed in TABLE X. Across
these tests, we achieved over 99.9% reliability. For 75 users,
only 0.01% of the messages were over the 250ms threshold – 1
of every 10,000 messages was lost, or once every 41 minutes a
user would lose a 250ms data packet. For 150 users, these
statistics increased slightly: 0.04% of the messages were over
the 250ms threshold: one of every 2,500 messages, or once
every 10 minutes the response time was too slow. Due to this
pattern, we believe that these losses may be a direct result of
network overload, and we shall look into compression schemes
in our future work.

TABLE X. STRESS RESULTS FOR 75 AND 150 CONCURRENT USERS
ACROSS 10 MACHINES

 Mean
(ms)

Min
(ms)

Max
(ms)

SD
(ms)

75 Users 64.33 21.69 268.30 20.51
150 Users 69.81 22.01 352.82 22.49

From these results, we can clearly see that our approach is
capable of scaling up to handle hundreds of users
simultaneously. Our current bottleneck appears to be network
bandwidth.

VII. RELATED WORK
As mentioned previously, we have relied heavily on the R

package Snowfall [10] in this work. We are also relying on our
cloud runtime, Granules [2, 3], for our distributed approach,
along with JRI [9].

Apart from Snowfall, there are several other R libraries
which focus on parallel computing. One of these is
mapReduce[13], which is an R implementation of the
MapReduce paradigm [4]. This library extends R’s internal
‘apply’ function to handle mappings across multiple cores on a
single machine. While users can develop their own apply
function to act in parallel across multiple machines, this leads
to an initial startup cost needed to convert sequential code. We
would have additionally needed to rework the original R scripts
to fit into the MapReduce paradigm, and would then have
needed to use Snow or Snowfall to gain access to multiple
machines. We believe that using Snowfall yields a closer
comparison of cost and runtime with Granules.

8

Hadoop[14] is another Java-based cloud computing
environment which supports the Map-Reduce paradigm.
Hadoop has execute-once semantics, which precludes
computations from executing more than once while retaining
state. Hadoop also does not incorporate support for data
streams as a data type; so, we would not be able to use Hadoop
in a live situation, where multiple users can continuously use
trained resources. The recent HadoopStreaming [15] utility
allows users to use map and reduce code written in languages
other than java, such as R and python. It allows Hadoop to
operate upon data from the command line, but it still relies on
run-once semantics, without support for state retention,
dormant computations, or datastreams.

Other frameworks which support the Map-Reduce
paradigm include Phoenix [16], QtConcurrent [17] and Skynet
[18]. While these all support the paradigm, like Hadoop they
only support run-once semantics. They have also been designed
to operate on static files, and not dynamic data streams.

There are several machine learning approaches which have
made use of a distributed environment. Aside from forming
consensus networks, as we have in our work here, there are
swarm approaches such as ant-colony[19]. These approaches
make use of multiple agents, which are responsible for learning
about their portion of data. While there is a history of
exploring the use of multiple agents in a distributed
environment [20], to the best of our knowledge this is the first
attempt at classifying EEG signals from multiple users using
cloud computing techniques.

VIII. CONCLUSIONS AND FUTURE WORK
While there is a definite overhead seen when using

Granules for training a cloud, the amount of time it takes to test
various sizes of EEG data streams shows that Granules can
actually classify significantly more efficiently. As the primary
bottleneck for real-time EEG signal processing is in the actual
classification, as opposed to the training of a network, we do
not see the training overhead as an impediment to further
research into this area. Snowfall is not designed to handle
streaming data, so it is understandable that it does not handle
streaming data as well as Granules, which was designed
specifically for that task. We also found that using JRI to
handle R calls from Java does not incur an inhibitive overhead
to the computations. While we are currently using JRI to
interface with R computations, there are two approaches that
we will explore to optimize the interface to R computations.
First, we will explore the use of sockets for communications.
Another viable approach would be the use of chaining, where
we interface with R via C++; in previous experiments, we have
found that our Java-C++ bridge introduces a communication
overhead of around 1 millisecond, so this approach could be
promising.

In the future, we plan to move from our pseudo-streams of
EEG signals we used here to simulate streaming data to real-
time streaming data from an EEG cap.

There are also several plans in place to modify the basic
operation of the neural networks. In the current

implementation, there is no way to retrain a network if we want
to change the lag level except to restart the clusters. Our future
investigation will focus on allowing a user to change this value
while the system is running.

 Another change would be to implement an online training
method – this would allow the networks to continue to learn
and refine as more data came in. While this would add to the
amount of computations generated by any interaction with a
user, we believe that the potential increases in accuracy as well
as removing the need to take a network offline and potentially
spend hours to retraining would prove to balance out this cost.

REFERENCES
[1] F. Galan, et al., "A brain-actuated wheelchair: Asynchronous and non-

invasive Brain-computer interfaces for continuous control of robots,"
Clinical Neurophysiology, vol. 119, pp. 2159-2169, 2008.

[2] S. Pallickara, et al., "Granules: A Lightweight, Streaming Runtime for
Cloud Computing With Support for Map-Reduce," in IEEE International
Conference on Cluster Computing, New Orleans, LA., 2009.

[3] S. Pallickara, et al., "An Overview of the Granules Runtime for Cloud
Computing," in IEEE International Conference on e-Science,
Indianapolis, 2008.

[4] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on
large clusters," ACM Commun., vol. 51, pp. 107-113, Jan. 2008 2008.

[5] M. Isard, et al., "Dryad: distributed data-parallel programs from
sequential building blocks," in 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems, Lisbon, Poutugal, 2007.

[6] (2010). The R Project for Statistical Computing. Available:
http://www.r-project.org

[7] (2010). Rmetrics. Available: https://www.rmetrics.org/
[8] Bioconductor: Open Source Software for Bioinformatics. Available:

http://www.biocunductor.org/
[9] "JRI - Java/R Interface," 0.5-0 ed, 2009.
[10] J. Knaus, "snowfall: Easier cluster computing (based on snow)," 1.84 ed,

2010.
[11] L. Tierney, et al., "SNOW: Simple Network of Workstations," ed, 2009.
[12] M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised

learning," Neural Networks, vol. 6, pp. 525-533, 1993.
[13] C. Brown, "mapReduce: flexible mapReduce algorithm for parallel

computation," 1.02 ed, 2009.
[14] T. White, Hadoop: The Definitive Guide, 1 ed.: O'Reilly Media, 2009.
[15] D. S. Rosenberg, "HadoopStreaming: Utilities for using R scripts in

Hadoop streaming," 0.2 ed, 2010.
[16] C. Ranger, et al., "Evaluating MapReduce for Multi-core and

Multiprocessor Systems," presented at the IEEE HPCA-13: 13th
International Symposium on High-Performance Computer Architecture,
Phoenix, Arizona, 2007.

[17] "Qt Concurrent," 0.1.2 ed, 2010, p. Simplified MapReduce in C++ with
support for multicores.

[18] A. Pisoni, "Skynet: A Ruby MapReduce Framework," 0.9.3 ed, 2010.
[19] M. Dorigo and L. Gambardella, "Ant colony system: a cooperative

learning approach to the traveling salesman problem," IEEE
Transactions on Evolutionary Computation, vol. 1, pp. 53-66, Apr 1997
1997.

[20] G. Weiß, "A Multiagent Perspective of Parallel and Distributed Machine
Learning," in 2nd International Conference on Autonomous Agents,
1998, pp. 226-230.

